Probing massive stars around gamma-ray burst progenitors

被引:4
|
作者
Lu, Wenbin [1 ]
Kumar, Pawan [1 ]
Smoot, George F. [2 ]
机构
[1] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA
[2] Univ Paris Diderot, Univ Sorbonne Paris Cite, APC, PCCP, F-75013 Paris, France
关键词
radiation mechanisms: non-thermal; methods: analytical; gamma-ray burst: general; HIGH-ENERGY EMISSION; EXTRAGALACTIC BACKGROUND LIGHT; CHERENKOV TELESCOPE ARRAY; CORE-COLLAPSE SUPERNOVAE; RELATIVISTIC BLAST WAVES; COMPTON-SCATTERING; POPULATION III; BINARY STARS; GRB; 130427A; JETS;
D O I
10.1093/mnras/stv1677
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Long gamma-ray bursts (GRBs) are produced by ultra-relativistic jets launched from core collapse of massive stars. Most massive stars form in binaries and/or in star clusters, which means that there may be a significant external photon field (EPF) around the GRB progenitor. We calculate the inverse-Compton scattering of EPF by the hot electrons in the GRB jet. Three possible cases of EPF are considered: the progenitor is (I) in a massive binary system, (II) surrounded by aWolf-Rayet-star wind and (III) in a dense star cluster. Typical luminosities of 10(46)-10(50) erg s(-1) in the 1-100 GeV band are expected, depending on the stellar luminosity, binary separation (I), wind mass-loss rate (II), stellar number density (III), etc. We calculate the light curve and spectrum in each case, taking fully into account the equal-arrival time surfaces and possible pair-production absorption with the prompt gamma-rays. Observations can put constraints on the existence of such EPFs (and hence on the nature of GRB progenitors) and on the radius where the jet internal dissipation process accelerates electrons.
引用
收藏
页码:1458 / 1470
页数:13
相关论文
共 50 条
  • [1] Which massive stars are gamma-ray burst progenitors?
    Petrovic, J
    Langer, N
    Yoon, SC
    Heger, A
    [J]. ASTRONOMY & ASTROPHYSICS, 2005, 435 (01) : 247 - 259
  • [2] Massive binary systems as gamma-ray burst progenitors
    Petrovic, Jelena
    [J]. Proceedings of the 14th National Conference of Astronomers of Serbia and Montenegro, 2006, (80): : 57 - 60
  • [3] Wolf-Rayet stars as gamma-ray burst progenitors
    Langer, N.
    van Marle, A. -J.
    Yoon, S. -C.
    [J]. NEW ASTRONOMY REVIEWS, 2010, 54 (3-6) : 206 - 210
  • [4] Gamma-Ray Burst Progenitors
    Levan, Andrew
    Crowther, Paul
    de Grijs, Richard
    Langer, Norbert
    Xu, Dong
    Yoon, Sung-Chul
    [J]. SPACE SCIENCE REVIEWS, 2016, 202 (1-4) : 33 - 78
  • [5] Gamma-Ray Burst Progenitors
    Andrew Levan
    Paul Crowther
    Richard de Grijs
    Norbert Langer
    Dong Xu
    Sung-Chul Yoon
    [J]. Space Science Reviews, 2016, 202 : 33 - 78
  • [6] Models of the circumstellar medium around gamma-ray burst progenitors
    van Marle, A. J.
    Langer, N.
    Garcia-Segura, G.
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2006, 121 (12): : 1607 - 1608
  • [7] The diversity of gamma-ray burst afterglows and the surroundings of massive stars
    Chevalier, RA
    Li, ZY
    Fransson, C
    [J]. ASTROPHYSICAL JOURNAL, 2004, 606 (01): : 369 - 380
  • [8] The environments around long-duration gamma-ray burst progenitors
    Fryer, Christopher L.
    Rockefeller, Gabriel
    Young, Patrick A.
    [J]. ASTROPHYSICAL JOURNAL, 2006, 647 (02): : 1269 - 1285
  • [9] Gamma-ray burst environments and progenitors
    Chevalier, RA
    Li, ZY
    [J]. ASTROPHYSICAL JOURNAL, 1999, 520 (01): : L29 - L32
  • [10] Constraining gamma-ray burst progenitors
    Levan, Andrew
    [J]. DEATH OF MASSIVE STARS: SUPERNOVAE AND GAMMA-RAY BURSTS, 2012, (279): : 95 - 101