A Four for the Price of One Duality Principle for Distributive Spaces

被引:4
|
作者
Hofmann, Dirk [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
关键词
Topological space; Ordered set; Distributivity; Disconnected space; Idempotents split completion; Duality;
D O I
10.1007/s11083-012-9267-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider topological spaces as generalised orders and characterise those spaces which satisfy a (suitably defined) topological distributive law. Furthermore, we show that the category of these spaces is dually equivalent to a certain category of frames by simply observing that both sides represent the idempotents split completion of the same category.
引用
收藏
页码:643 / 655
页数:13
相关论文
共 50 条
  • [1] A Four for the Price of One Duality Principle for Distributive Spaces
    Dirk Hofmann
    Order, 2013, 30 : 643 - 655
  • [2] DUALITY FOR DISTRIBUTIVE SPACES
    Hofmann, Dirk
    THEORY AND APPLICATIONS OF CATEGORIES, 2013, 28 : 66 - 122
  • [3] Many for the Price of One Duality Principle for Affine Sets
    Sergey A. Solovyov
    Applied Categorical Structures, 2015, 23 : 643 - 663
  • [4] Many for the Price of One Duality Principle for Affine Sets
    Solovyov, Sergey A.
    APPLIED CATEGORICAL STRUCTURES, 2015, 23 (05) : 643 - 663
  • [5] The principle of duality in Lorents spaces
    Goldman, ML
    Stepanov, VD
    Heinig, HP
    DOKLADY AKADEMII NAUK, 1995, 344 (06) : 740 - 744
  • [6] On the principle of duality in Lorentz spaces
    GolDman, ML
    Heinig, HP
    Stepanov, VD
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (05): : 959 - 979
  • [7] Sawyer Duality Principle in Grand Lebesgue Spaces
    Jain, P.
    Singh, A. P.
    Singh, M.
    Stepanov, V. D.
    DOKLADY MATHEMATICS, 2018, 97 (01) : 18 - 19
  • [8] Ergodic theory and the duality principle on homogeneous spaces
    Gorodnik, Alexander
    Nevo, Amos
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (01) : 159 - 244
  • [9] Sawyer Duality Principle in Grand Lebesgue Spaces
    P. Jain
    A. P. Singh
    M. Singh
    V. D. Stepanov
    Doklady Mathematics, 2018, 97 : 18 - 19
  • [10] Ergodic theory and the duality principle on homogeneous spaces
    Alexander Gorodnik
    Amos Nevo
    Geometric and Functional Analysis, 2014, 24 : 159 - 244