Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level

被引:4
|
作者
Guan, Kang [1 ]
Wu, Jianqing [1 ]
Cheng, Laifei [2 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] Northwestern Polytech Univ, Sci & Technol Thermostruct Composite Mat Lab, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal conductivity; ceramic matrix composites; chemical vapor infiltration; porosity; cracking; interface; PORE STRUCTURE EVOLUTION; TRANSPORT-PROPERTIES; MATRIX CRACKING; SILICON-CARBIDE; 2D-SICF/SIC COMPOSITES; RANDOM ARRAYS; DIFFUSIVITY; PERMEABILITY; FABRICATION; CYLINDERS;
D O I
10.3390/ma9121011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites' thermal conductivity is matrix cracking's density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Microstructure characterization of CVI-densified carbon/carbon composites with various fiber distributions
    Dietrich, S.
    Gebert, J. -M.
    Stasiuk, G.
    Wanner, A.
    Weidenmann, K. A.
    Deutschmann, O.
    Tsukrov, I.
    Piat, R.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (15) : 1892 - 1900
  • [2] Damping characteristics of CVI-densified carbon-carbon composites
    Wang, C
    Zhu, ZG
    Hou, XH
    Li, HJ
    [J]. CARBON, 2000, 38 (13) : 1821 - 1824
  • [3] Progressive modeling of transverse thermal conductivity of unidirectional natural fiber composites
    Zhao, Xiaoyu
    Tu, Wenqiong
    Chen, Qiang
    Wang, Guannan
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 162
  • [4] Modeling thermal conductivity of polymer/carbon fiber composites prepared by SCFNA method
    He, Xiaoxiang
    He, Zhiyuan
    Ou, Dan
    Ma, Ying
    Li, Linjie
    Luo, Yue
    Zhang, Hehui
    Wu, Shuying
    [J]. POLYMER COMPOSITES, 2024, 45 (02) : 1715 - 1725
  • [5] Thermal conductivity of fiber reinforced composites by the FEM
    Islam, MR
    Pramila, A
    [J]. JOURNAL OF COMPOSITE MATERIALS, 1999, 33 (18) : 1699 - 1715
  • [6] Thermal conductivity enhancement of carbon fiber composites
    Wang, Moran
    Kang, Qinjun
    Pan, Ning
    [J]. APPLIED THERMAL ENGINEERING, 2009, 29 (2-3) : 418 - 421
  • [7] Estimation of thermal conductivity of short fiber composites
    Patil, Avinash
    ShashaVali, Shaik
    [J]. MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 868 - 873
  • [8] Modeling of Thermal Conductivity of Graphite Nanosheet Composites
    Wei Lin
    Rongwei Zhang
    C.P. Wong
    [J]. Journal of Electronic Materials, 2010, 39 : 268 - 272
  • [9] Thermal conductivity modeling of compacted nanowire composites
    Tian, Weixue
    Yang, Ronggui
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 101 (05)
  • [10] Thermal conductivity modeling of compacted nanowire composites
    Tian, Weixue
    Yang, Ronggui
    [J]. Journal of Applied Physics, 2007, 101 (05):