MINIMAX SEQUENTIAL TESTS FOR MANY COMPOSITE HYPOTHESES. I

被引:3
|
作者
Brodsky, B. E. [1 ]
Darkhovsky, B. S. [2 ]
机构
[1] Cent Econ & Math Inst RAS, Moscow 117418, Russia
[2] Russian Acad Sci, Inst Syst Anal, Moscow 117312, Russia
关键词
composite multihypothesis testing; sequential tests;
D O I
10.1137/S0040585X97983237
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of sequential testing of many composite hypotheses is considered. Each hypothesis is described by the density function of observations that depends on a parameter from one of disjoint sets. New performance measures for one-sided and multisided sequential tests are proposed and nonasymptotical a priori lower bounds for these measures are proved. Sequential tests are found which use a minimax procedure on parametric sets for sequential likelihood ratio and are asymptotically optimal: the a priori lower bounds for performance measures are attained for these tests. All proofs are in Part II.
引用
收藏
页码:565 / 579
页数:15
相关论文
共 50 条
  • [1] MINIMAX SEQUENTIAL TESTS FOR MANY COMPOSITE HYPOTHESES. II
    Brodsky, B. E.
    Darkhovsky, B. S.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2009, 53 (01) : 1 - 12
  • [2] MINIMAX SEQUENTIAL-TESTS OF SOME COMPOSITE HYPOTHESES
    DEGROOT, MH
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (01): : 233 - 233
  • [3] MINIMAX SEQUENTIAL-TESTS OF SOME COMPOSITE HYPOTHESES
    DEGROOT, MH
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (04): : 1193 - 1200
  • [4] ASYMPTOTICALLY MINIMAX TESTS OF COMPOSITE HYPOTHESES
    WEISS, L
    WOLFOWIT.J
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 14 (02): : 161 - &
  • [5] Minimax Optimal Sequential Tests for Multiple Hypotheses
    Fauss, Michael
    Zoubir, Abdelhak M.
    Poor, H. Vincent
    [J]. 2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 1044 - 1046
  • [6] SEQUENTIAL TESTS FOR COMPOSITE HYPOTHESES
    COX, DR
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1952, 48 (02): : 290 - 299
  • [7] SEQUENTIAL TESTS OF COMPOSITE HYPOTHESES
    JOANES, DN
    [J]. BIOMETRIKA, 1972, 59 (03) : 633 - 637
  • [8] ASYMPTOTICALLY MINIMAX TESTS OF SOME NONSTANDARD COMPOSITE HYPOTHESES
    WEISS, L
    [J]. STATISTICS & PROBABILITY LETTERS, 1991, 11 (03) : 251 - 254
  • [9] A SEQUENTIAL PROCEDURE FOR TESTING MANY COMPOSITE HYPOTHESES
    PAVLOV, IV
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1988, 32 (01) : 138 - 142
  • [10] MECHANISM FOR FORMING COMPOSITE EXPLANATORY HYPOTHESES.
    Josephson, John R.
    Chandrasekaran, B.
    Smith Jr., Jack W.
    Tanner, Michael C.
    [J]. IEEE Transactions on Systems, Man and Cybernetics, 1987, SMC-17 (03): : 445 - 454