A perspective on optimal leaf stomatal conductance under CO2 and light co-limitations

被引:47
|
作者
Vico, Giulia [1 ]
Manzoni, Stefano [2 ,3 ]
Palmroth, Sari [3 ,4 ]
Weih, Martin [1 ]
Katul, Gabriel [2 ,3 ]
机构
[1] Swedish Univ Agr Sci, Dept Crop Prod Ecol, SE-75007 Uppsala, Sweden
[2] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA
[3] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA
[4] Swedish Univ Agr Sci, Dept Forest Ecol & Management, SE-90183 Umea, Sweden
基金
美国国家科学基金会; 美国食品与农业研究所;
关键词
Stomatal conductance; Optimization; Rubisco-limited photosynthesis; Electron transport limited photosynthesis; Leaf gas exchange model; Marginal water use efficiency; VAPOR-PRESSURE DEFICIT; GAS-EXCHANGE; ELEVATED CO2; TEMPERATURE RESPONSE; CARBON-DIOXIDE; WATER-STRESS; PINUS-TAEDA; MODEL; PHOTOSYNTHESIS; DROUGHT;
D O I
10.1016/j.agrformet.2013.07.005
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
To describe stomatal response to micro-environmental variations, optimization theories for canopy gas exchange are often used as alternatives to empirical or mechanistic but complex models of stomata! function. Solutions for optimal stomatal conductance have been proposed assuming leaf photosynthesis is limited by either Rubisco activity (and hence by CO2 at the photosynthetic site) or ribulose-1,5-biphosphate (RuBP) regeneration rate (and hence light availability). These contrasting assumptions result in different relations between the marginal water use efficiency lambda (the key optimization parameter) and atmospheric CO2 concentration (c(a)). Contrasting predictions of stomatal responses to elevated c(a) ensue, begging the question as to which approach is most suitable. Here, it is proposed that stomatal aperture is optimized for shifting limitations, motivating the development of a framework where Rubisco activity and electron transport co-limit photosynthesis. This approach attempts to reconcile the two previously proposed optimality solutions. Based on a minimalist model of photosynthesis that accounts for both limitations, optimal stomatal conductance is derived as a function of photosynthetic parameters, lambda, and leaf micro-environmental conditions. The optimal stomatal conductances resulting from the different formulations of photosynthesis and functional dependencies of lambda on c(a) are compared for varying environmental conditions, with reference to often observed patterns and scaling relationships. The results suggest that short-term (e.g., sub-daily) fluctuations in c(a) trigger small adjustments in stomatal aperture at a constant lambda, while long-term (e.g., growing season or longer) elevated c(a), may elicit acclimation mechanisms, potentially resulting in changes in lambda. (C) 2013 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:191 / 199
页数:9
相关论文
共 50 条
  • [1] Light and CO2 limitations of carbon fixation within the leaf
    Sun, JD
    Nishio, JN
    Vogelman, TC
    PLANT PHYSIOLOGY, 1996, 111 (02) : 353 - 353
  • [2] Optimal stomatal theory predicts CO2 responses of stomatal conductance in both gymnosperm and angiosperm trees
    Gardner, Anna
    Jiang, Mingkai
    Ellsworth, David S.
    MacKenzie, A. Robert
    Pritchard, Jeremy
    Bader, Martin Karl-Friedrich
    Barton, Craig V. M.
    Bernacchi, Carl
    Calfapietra, Carlo
    Crous, Kristine Y.
    Dusenge, Mirindi Eric
    Gimeno, Teresa E.
    Hall, Marianne
    Lamba, Shubhangi
    Leuzinger, Sebastian
    Uddling, Johan
    Warren, Jeffrey
    Wallin, Goran
    Medlyn, Belinda E.
    NEW PHYTOLOGIST, 2023, 237 (04) : 1229 - 1241
  • [3] CO2 Sensing and CO2 peculation of Stomatal Conductance: Advances and Open Questions
    Engineer, Cawas B.
    Hashimoto-Sugimoto, Mimi
    Negi, Juntaro
    Israelsson-Nordstrom, Maria
    Azoulay-Shemer, Tamar
    Rappel, Wouter-Jan
    Iba, Koh
    Schroeder, Julian I.
    TRENDS IN PLANT SCIENCE, 2016, 21 (01) : 16 - 30
  • [4] Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes
    Yu, Q
    Zhang, YG
    Liu, YF
    Shi, PL
    ANNALS OF BOTANY, 2004, 93 (04) : 435 - 441
  • [5] Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2
    Tricker, PJ
    Trewin, H
    Kull, O
    Clarkson, GJJ
    Eensalu, E
    Tallis, MJ
    Colella, A
    Doncaster, CP
    Sabatti, M
    Taylor, G
    OECOLOGIA, 2005, 143 (04) : 652 - 660
  • [6] Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2
    Penny J. Tricker
    Harriet Trewin
    Olevi Kull
    Graham J. J. Clarkson
    Eve Eensalu
    Matthew J. Tallis
    Alessio Colella
    C. Patrick Doncaster
    Maurizio Sabatti
    Gail Taylor
    Oecologia, 2005, 143 : 652 - 660
  • [7] Modelling stomatal conductance of wheat: An assessment of response relationships under elevated CO2
    Houshmandfar, Alireza
    Fitzgerald, Glenn J.
    Armstrong, Roger
    Macabuhay, Allene A.
    Tausz, Michael
    AGRICULTURAL AND FOREST METEOROLOGY, 2015, 214 : 117 - 123
  • [8] Increasing stomatal conductance in response to rising atmospheric CO2
    Purcell, C.
    Batke, S. P.
    Yiotis, C.
    Caballero, R.
    Soh, W. K.
    Murray, M.
    McElwain, J. C.
    ANNALS OF BOTANY, 2018, 121 (06) : 1137 - 1149
  • [9] NET CO2 OUTPUT BY CAM PLANTS IN THE LIGHT - THE ROLE OF LEAF CONDUCTANCE
    FRIEMERT, V
    KLUGE, M
    SMITH, JAC
    PHYSIOLOGIA PLANTARUM, 1986, 68 (03) : 353 - 358
  • [10] Effects of CO2 on stomatal conductance:: Do stomata open at very high CO2 concentrations?
    Wheeler, RM
    Mackowiak, CL
    Yorio, NC
    Sager, JC
    ANNALS OF BOTANY, 1999, 83 (03) : 243 - 251