Data assimilation for large-scale spatio-temporal systems using a location particle smoother

被引:10
|
作者
Briggs, Jonathan [1 ]
Dowd, Michael [2 ]
Meyer, Renate [1 ]
机构
[1] Univ Auckland, Dept Stat, Auckland 1, New Zealand
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
data assimilation; particle filtering; copulas; high dimensional; spatiotemporal statistics; state-space models; dynamic systems; time series; TUTORIAL; MODELS; STATE; INFERENCE;
D O I
10.1002/env.2184
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Data assimilation estimates the time evolution of the probability density function (PDF) of state vectors characterising high-dimensional nonlinear spatiotemporal dynamic systems, making use of available observations. The current best-practice statistical data assimilation technique the ensemble Kalman filter relies on restrictive normality assumptions. The particle filter provides a methodology for estimating these PDFs without requiring these restrictive distributional assumptions using samples drawn from the conditional state PDF given available observations. Unfortunately, particle filter weight collapse is severe when the state and/or observation vectors are high dimensional, making them impractical for systems with a spatial component. We offer a solution to this problem by drawing the required sample from the conditional PDF at each time step using a particle smoother across the spatial locations. A further innovation is the use of meta-elliptical copulas to provide a general framework for defining the prediction PDFs one flexible enough to accurately describe the numerical model errors and fast enough to sample to be applicable in practice. The proposed methods perform well compared with other candidate approaches in a 1000 dimensional spatiotemporal simulation study and a real 1750 dimensional marine ecosystem application based on partial differential equations and ocean monitoring data. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
  • [1] A comparative study of urban mobility patterns using large-scale spatio-temporal data
    The Anh Dang
    Chiam, Jodi
    Li, Ying
    [J]. 2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 572 - 579
  • [2] A sandwich smoother for spatio-temporal functional data
    French, Joshua P.
    Kokoszka, Piotr S.
    [J]. SPATIAL STATISTICS, 2021, 42
  • [3] Spatio-Temporal Monitoring using Contours in Large-scale Wireless Sensor Networks
    Alasti, Hadi
    Nasipuri, Asis
    [J]. 2ND ACM INTERNATIONAL WORKSHOP ON FOUNDATIONS OF WIRELESS AD HOC AND SENSOR NETWORKING AND COMPUTING, 2009, : 77 - 85
  • [4] Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity
    Keller, Stefanie
    Bartolino, Valerio
    Hidalgo, Manuel
    Bitetto, Isabella
    Casciaro, Loredana
    Cuccu, Danila
    Esteban, Antonio
    Garcia, Cristina
    Garofalo, Germana
    Josephides, Marios
    Jadaud, Angelique
    Lefkaditou, Evgenia
    Maiorano, Porzia
    Manfredi, Chiara
    Marceta, Bojan
    Massut, Enric
    Micallef, Reno
    Peristeraki, Panagiota
    Relini, Giulio
    Sartor, Paolo
    Spedicato, Maria Teresa
    Tserpes, George
    Quetglas, Antoni
    [J]. PLOS ONE, 2016, 11 (01):
  • [5] Spatio-temporal models for large-scale indicators of extreme weather
    Heaton, Matthew J.
    Katzfuss, Matthias
    Ramachandar, Shahla
    Pedings, Kathryn
    Gilleland, Eric
    Mannshardt-Shamseldin, Elizabeth
    Smith, Richard L.
    [J]. ENVIRONMETRICS, 2011, 22 (03) : 294 - 303
  • [6] Mobility Genome™- A Framework for Mobility Intelligence from Large-Scale Spatio-Temporal Data
    The Anh Dang
    Deepak, Jayakumaran
    Wang, Jingxuan
    Luo, Shixin
    Jin, Yunye
    Ng, Yibin
    Lim, Aloysius
    Li, Ying
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2017, : 449 - 458
  • [7] A multi-source spatio-temporal data cube for large-scale geospatial analysis
    Gao, Fan
    Yue, Peng
    Cao, Zhipeng
    Zhao, Shuaifeng
    Shangguan, Boyi
    Jiang, Liangcun
    Hu, Lei
    Fang, Zhe
    Liang, Zheheng
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2022, 36 (09) : 1853 - 1884
  • [8] Particle network EnKF for large-scale data assimilation
    Li, Xinjia
    Lu, Wenlian
    [J]. FRONTIERS IN PHYSICS, 2022, 10
  • [9] Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph Convolutional Networks
    Liu, Juntong
    Xiao, Yong
    Li, Yingyu
    Shi, Guangming
    Saad, Walid
    Poor, H. Vincent
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [10] COKRIGING METHOD FOR SPATIO-TEMPORAL ASSIMILATION OF MULTI-SCALE SATELLITE DATA
    Liu, Hongxing
    Yang, Bo
    Kang, Emily
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3314 - 3316