Cochran theorems for a multivariate vector-elliptically contoured model. Part II

被引:0
|
作者
Wong, CS
Cheng, H
机构
[1] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
[2] Univ Prince Edward Isl, Charlottetown, PE PE1, Canada
关键词
Cochran theorem; congruent matrix variables; gamma random variable; generalized Wishart distribution; idempotent; multivariate normal and elliptically contoured; distributions; Moore-Penrose inverse; quadratic form; spectral theorem; zonal polynomial;
D O I
10.1016/S0378-3758(98)00259-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Y be a vector-elliptically contoured distributed n by p random matrix associated with a gamma (alpha, beta) random variable, where the mean of Y need not be zero and the covariance of Y may be singular and need not be the Kronecker product of the design covariance and the population covariance. A Cochran theorem about the quadratic forms of Y is obtained, when alpha=np and beta=2, it yields the most general Cochran theorem for a normal Y. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:299 / 324
页数:26
相关论文
共 50 条