A non-homogeneous boundary value problem for the Kuramoto-Sivashinsky equation posed in a finite interval*

被引:14
|
作者
Li, Jing [1 ]
Zhang, Bing-Yu [2 ]
Zhang, Zhixiong [3 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ & Math, Chengdu 611130, Peoples R China
[2] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[3] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
Kuramoto-Sivashinsky equation; initial boundary value problem; well-posedness; SHARP WELL-POSEDNESS; DE-VRIES EQUATION; INSTABILITY;
D O I
10.1051/cocv/2019027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the initial boundary value problem (IBVP) for the dispersive Kuramoto-Sivashinsky equation posed in a finite interval (0,L) with non-homogeneous boundary conditions. It is shown that the IBVP is globally well-posed in the spaceH(s)(0,L) for anys> -2 with the initial data inH(s)(0,L) and the boundary value data belonging to some appropriate spaces. In addition, the IBVP is demonstrated to be ill-posed in the spaceH(s)(0,L) for anys< -2 in the sense that the corresponding solution map fails to be inC(2).
引用
收藏
页数:26
相关论文
共 50 条
  • [1] On the non-homogeneous stationary Kuramoto-Sivashinsky equation
    Cheskidov, A
    Foias, C
    PHYSICA D, 2001, 154 (1-2): : 1 - 14
  • [2] Non-homogeneous boundary value problems of the Kawahara equation posed on a finite interval
    Sriskandasingam, Mayuran
    Sun, Shu-Ming
    Zhang, Bing-Yu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 227
  • [3] A nonhomogeneous boundary value problem for the Kuramoto-Sivashinsky equation in a quarter plane
    Li, Jing
    Zhang, Bing-Yu
    Zhang, Zhixiong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (15) : 5619 - 5641
  • [4] Local Bifurcations in the Periodic Boundary Value Problem for the Generalized Kuramoto-Sivashinsky Equation
    Kulikov, A. N.
    Kulikov, D. A.
    AUTOMATION AND REMOTE CONTROL, 2017, 78 (11) : 1955 - 1966
  • [5] Bifurcations of Spatially Inhomogeneous Solutions of a Boundary Value Problem for the Generalized Kuramoto-Sivashinsky Equation
    Sekatskaya, A., V
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2018, 21 (01): : 69 - 78
  • [6] A non-homogeneous boundary-value problem for the KdV-Burgers equation posed on a finite domain
    You, Shujun
    Guo, Boling
    APPLIED MATHEMATICS LETTERS, 2019, 94 : 155 - 159
  • [7] Optimal Boundary Control of Kuramoto-Sivashinsky Equation
    Dubljevic, Stevan
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 141 - 147
  • [8] Homogeneous initial-boundary value problem of the Rosenau equation posed on a finite interval
    Zhou, Deqin
    Mu, Chunlai
    APPLIED MATHEMATICS LETTERS, 2016, 57 : 7 - 12
  • [9] Robust boundary control for the Kuramoto-Sivashinsky equation
    Hu, CB
    Temam, R
    OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF PROFESSOR ALAIN BENSOUSSAN'S 60TH BIRTHDAY, 2001, : 353 - 362
  • [10] Hidden Symmetry in a Kuramoto-Sivashinsky Initial-Boundary Value Problem
    Buono, Pietro-Luciano
    van Veen, Lennaert
    Frawley, Eryn
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09):