Matching biomedical ontologies based on formal concept analysis

被引:31
|
作者
Zhao, Mengyi [1 ,2 ]
Zhang, Songmao [1 ]
Li, Weizhuo [1 ,2 ]
Chen, Guowei [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, MADIS, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
来源
关键词
Ontology matching; Formal concept analysis; Concept lattice;
D O I
10.1186/s13326-018-0178-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The goal of ontology matching is to identify correspondences between entities from different yet overlapping ontologies so as to facilitate semantic integration, reuse and interoperability. As a well developed mathematical model for analyzing individuals and structuring concepts, Formal Concept Analysis (FCA) has been applied to ontology matching (OM) tasks since the beginning of OM research, whereas ontological knowledge exploited in FCA-based methods is limited. This motivates the study in this paper, i.e., to empower FCA with as much as ontological knowledge as possible for identifying mappings across ontologies. Methods: We propose a method based on Formal Concept Analysis to identify and validate mappings across ontologies, including one-to-one mappings, complex mappings and correspondences between object properties. Our method, called FCA-Map, incrementally generates a total of five types of formal contexts and extracts mappings from the lattices derived. First, the token-based formal context describes how class names, labels and synonyms share lexical tokens, leading to lexical mappings (anchors) across ontologies. Second, the relation-based formal context describes how classes are in taxonomic, partonomic and disjoint relationships with the anchors, leading to positive and negative structural evidence for validating the lexical matching. Third, the positive relation-based context can be used to discover structural mappings. Afterwards, the property-based formal context describes how object properties are used in axioms to connect anchor classes across ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence of classes across ontologies in anonymous ancestors of anchors, from which extended structural mappings and complex mappings can be identified. Results: Evaluation on the Anatomy, the Large Biomedical Ontologies, and the Disease and Phenotype track of the 2016 Ontology Alignment Evaluation Initiative campaign demonstrates the effectiveness of FCA-Map and its competitiveness with the top-ranked systems. FCA-Map can achieve a better balance between precision and recall for large-scale domain ontologies through constructing multiple FCA structures, whereas it performs unsatisfactorily for smaller-sized ontologies with less lexical and semantic expressions. Conclusions: Compared with other FCA-based OM systems, the study in this paper is more comprehensive as an attempt to push the envelope of the Formal Concept Analysis formalism in ontology matching tasks. Five types of formal contexts are constructed incrementally, and their derived concept lattices are used to cluster the commonalities among classes at lexical and structural level, respectively. Experiments on large, real-world domain ontologies show promising results and reveal the power of FCA.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Matching biomedical ontologies based on formal concept analysis
    Mengyi Zhao
    Songmao Zhang
    Weizhuo Li
    Guowei Chen
    [J]. Journal of Biomedical Semantics, 9
  • [2] Ranking Ontologies Based on Formal Concept Analysis
    Li, Jianghua
    Shi, Peng
    Cheng, Mingzhi
    [J]. JOURNAL OF COMPUTERS, 2014, 9 (01) : 215 - 221
  • [3] Designing ontologies using formal concept analysis
    Obitko, M
    Snásel, V
    Smid, J
    [J]. CIC '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN COMPUTING, 2004, : 302 - 308
  • [4] Formal Concept Analysis for Ontologies and their Annotation Files
    Cross, Valerie V.
    Yi, Wenting
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 2016 - 2023
  • [5] A Formal Concept Analysis-Based Method for Developing Process Ontologies
    Batres, Rafael
    Akmal, Suriati
    [J]. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2013, 46 (06) : 396 - 406
  • [6] Merging Expressive Ontologies Using Formal Concept Analysis
    Cure, Olivier
    [J]. ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2009 WORKSHOPS, 2009, 5872 : 49 - 58
  • [7] Conceptual knowledge processing with formal concept analysis and ontologies
    Cimiano, P
    Hotho, A
    Stumme, G
    Tane, J
    [J]. CONCEPT LATTICES, PROCEEDINGS, 2004, 2961 : 189 - 207
  • [8] Inductive construction of ontologies from formal concept analysis
    Bain, M
    [J]. AI 2003: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2003, 2903 : 88 - 99
  • [9] Matching Formal and Informal Geospatial Ontologies
    Du, Heshan
    Alechina, Natasha
    Jackson, Mike
    Hart, Glen
    [J]. GEOGRAPHIC INFORMATION SCIENCE AT THE HEART OF EUROPE, 2013, : 155 - 171
  • [10] Tackling the challenges of matching biomedical ontologies
    Daniel Faria
    Catia Pesquita
    Isabela Mott
    Catarina Martins
    Francisco M. Couto
    Isabel F. Cruz
    [J]. Journal of Biomedical Semantics, 9