Almost-tiling the plane by ellipses

被引:1
|
作者
Kuperberg, K [1 ]
Kuperberg, W
Matousek, J
Valtr, P
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
[2] Charles Univ, Dept Appl Math, CR-11800 Prague 1, Czech Republic
[3] ETH Zurich, Inst Theoret Informat, CH-8092 Zurich, Switzerland
[4] Rutgers State Univ, DIMACS Ctr, Piscataway, NJ 08855 USA
关键词
Side Length; Circular Disk; Finite Packing;
D O I
10.1007/PL00009466
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any lambda > 1 we construct a periodic and locally finite packing of the plane with ellipses whose lambda-enlargement covers the whole plane. This answers a question of Imre Barany. On the other hand, we show that if C is a packing in the plane with circular disks of radius at most 1, then its (1 + 10(-5))-enlargement covers no square with side length 4.
引用
收藏
页码:367 / 375
页数:9
相关论文
共 50 条
  • [1] Almost-Tiling the Plane by Ellipses
    K. Kuperberg
    W. Kuperberg
    J. Matoušek
    P. Valtr
    Discrete & Computational Geometry, 1999, 22 : 367 - 375
  • [2] Covering a plane with ellipses
    Erzin, A. I.
    Astrakov, S. N.
    OPTIMIZATION, 2013, 62 (10) : 1357 - 1366
  • [3] A TILING OF THE PLANE WITH TRIANGLES
    MIELKE, PT
    TWO-YEAR COLLEGE MATHEMATICS JOURNAL, 1983, 14 (05): : 377 - 381
  • [4] A Fibonacci tiling of the plane
    Huegy, CW
    West, DB
    DISCRETE MATHEMATICS, 2002, 249 (1-3) : 111 - 116
  • [5] Tiling the Plane with Permutations
    Masse, Alexandre Blondin
    Frosini, Andrea
    Rinaldi, Simone
    Vuillon, Laurent
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, 2011, 6607 : 381 - +
  • [6] Minimal area ellipses in the hyperbolic plane
    Weber M.J.
    Schröcker H.-P.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (1): : 181 - 200
  • [7] Rep-tiling the plane
    Stewart, I
    SCIENTIFIC AMERICAN, 2000, 282 (05) : 110 - 111
  • [8] Tiling pictures of the plane with dominoes
    Fournier, JC
    DISCRETE MATHEMATICS, 1997, 165 : 313 - 320
  • [9] Isohedral Polyomino Tiling of the Plane
    K. Keating
    A. Vince
    Discrete & Computational Geometry, 1999, 21 : 615 - 630
  • [10] A Chebyshev Theorem for Ellipses in the Complex Plane
    Munch, Niels Juul
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (05): : 430 - 436