Clustering Data Streams over Sliding Windows by DCA

被引:3
|
作者
Ta Minh Thuy [1 ]
Le Thi Hoai An [1 ,2 ]
Boudjeloud-Assala, Lydia [1 ]
机构
[1] Univ Lorraine, Lab Theoret & Appl Comp Sci, LITA EA 3097, F-57045 Metz, France
[2] Univ Lorraine, Lorraine Res Lab Comp Sci & Its Applicat, LORIA CNRS UMR 7503, F-54506 Nancy, France
关键词
Clustering; Data streams; Sliding windows; clustering; DCA;
D O I
10.1007/978-3-319-00293-4_6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mining data stream is a challenging research area in data mining, and concerns many applications. In stream models, the data is massive and evolving continuously, it can be read only once or a small number of times. Due to the limited memory availability, it is impossible to load the entire data set into memory. Traditional data mining techniques are not suitable for this kind of model and applications, and it is required to develop new approaches meeting these new paradigms. In this paper, we are interested in clustering data stream over sliding window. We investigate an efficient clustering algorithm based on DCA (Difference of Convex functions Algorithm). Comparative experiments with clustering using the standard K-means algorithm on some real-data sets are presented.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 50 条
  • [1] HCLUWIN: AN ALGORITHM FOR CLUSTERING HETEROGENEOUS DATA STREAMS OVER SLIDING WINDOWS
    Ren, Jiadong
    Hu, Changzhen
    Ma, Ruiqing
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2010, 6 (05): : 2171 - 2179
  • [2] Sliding windows over uncertain data streams
    Michele Dallachiesa
    Gabriela Jacques-Silva
    Buğra Gedik
    Kun-Lung Wu
    Themis Palpanas
    [J]. Knowledge and Information Systems, 2015, 45 : 159 - 190
  • [3] Sliding windows over uncertain data streams
    Dallachiesa, Michele
    Jacques-Silva, Gabriela
    Gedik, Bugra
    Wu, Kun-Lung
    Palpanas, Themis
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 45 (01) : 159 - 190
  • [4] StreamSW: A density-based approach for clustering data streams over sliding windows
    Reddy, K. Shyam Sunder
    Bindu, C. Shoba
    [J]. MEASUREMENT, 2019, 144 : 14 - 19
  • [5] Partition-Based Clustering with Sliding Windows for Data Streams
    Youn, Jonghem
    Choi, Jihun
    Shim, Junho
    Lee, Sang-goo
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2017), PT II, 2017, 10178 : 289 - 303
  • [6] Sketching asynchronous data streams over sliding windows
    Bojian Xu
    Srikanta Tirthapura
    Costas Busch
    [J]. Distributed Computing, 2008, 20 : 359 - 374
  • [7] Efficiently Summarizing Data Streams over Sliding Windows
    Rivetti, Nicolo
    Busnel, Yann
    Mostefaoui, Achour
    [J]. 2015 IEEE 14th International Symposium on Network Computing and Applications (NCA), 2015, : 151 - 158
  • [8] On indexing sliding windows over online data streams
    Golab, L
    Garg, S
    Özsu, MT
    [J]. ADVANCES IN DATABASE TECHNOLOGY - EDBT 2004, PROCEEDINGS, 2004, 2992 : 712 - 729
  • [9] Sketching asynchronous data streams over sliding windows
    Xu, Bojian
    Tirthapura, Srikanta
    Busch, Costas
    [J]. DISTRIBUTED COMPUTING, 2008, 20 (05) : 359 - 374
  • [10] Dynamic adjustment of sliding windows over data streams
    Zhang, DD
    Li, JZ
    Zhang, ZG
    Wang, WP
    Guo, LJ
    [J]. ADVANCES IN WEB-AGE INFORMATION MANAGEMENT: PROCEEDINGS, 2004, 3129 : 24 - 33