Cusp Points in the Parameter Space of RPR-2PRR Parallel Manipulators

被引:4
|
作者
Moroz, G. [1 ,2 ]
Chablatl, D. [1 ]
Wenger, P. [1 ]
Rouiller, F. [2 ]
机构
[1] Inst Rercheche Commun & Cybernet Nantes, Nantes, France
[2] Lab Informat Paris, Paris, France
关键词
kinematics; singularities; cusp; parallel manipulator; symbolic computation;
D O I
10.1007/978-90-481-9689-0_4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the existence conditions of cusp points in the design parameter space of the RPR-2PRR parallel manipulators. Cusp points make possible non-singular assembly mode changing motion, which can possibly increase the size of the aspect, i.e. the maximum singularity free workspace. The method used is based on the notion of discriminant varieties and Cylindrical Algebraic Decomposition, and resorts to Grinner bases for the solutions of systems of equations.
引用
收藏
页码:29 / 37
页数:9
相关论文
共 11 条
  • [1] Cusp Points in the Parameter Space of Degenerate 3-RPR Planar Parallel Manipulators
    Manubens, Montserrat
    Moroz, Guillaume
    Chablat, Damien
    Wenger, Philippe
    Rouillier, Fabrice
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2012, 4 (04):
  • [2] Singular curves and cusp points in the joint space of 3-RPR parallel manipulators
    Zein, Mazen
    Wenger, Philippe
    Chablat, Damien
    2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 777 - +
  • [3] Cusp points and assembly changing motions in the PRR-PR-PRR planar parallel manipulator
    Shen, Chengwei
    Yu, Jingjun
    Pei, Xu
    FRONTIERS OF MECHANICAL ENGINEERING, 2023, 18 (02)
  • [4] Cusp points and assembly changing motions in the PRR-PR-PRR planar parallel manipulator
    Chengwei Shen
    Jingjun Yu
    Xu Pei
    Frontiers of Mechanical Engineering, 2023, 18
  • [5] Singular curves in the joint space and cusp points of 3-R(P)under-barR parallel manipulators
    Zein, Mazen
    Wenger, Philippe
    Chablat, Damien
    ROBOTICA, 2007, 25 : 717 - 724
  • [6] On the determination of cusp points of 3-R(P)under-barR parallel manipulators
    Moroz, G.
    Rouiller, F.
    Chablat, D.
    Wenger, P.
    MECHANISM AND MACHINE THEORY, 2010, 45 (11) : 1555 - 1567
  • [7] Singularity robust inverse dynamics of planar 2-RPR parallel manipulators
    Ider, SK
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2004, 218 (07) : 721 - 730
  • [8] A physical model of the solution space and the atlas of the reachable workspace for 2-DOF parallel planar manipulators
    Gao, F
    Zhang, XQ
    Zhao, YS
    Wang, HR
    MECHANISM AND MACHINE THEORY, 1996, 31 (02) : 173 - 184
  • [9] DISTRIBUTION OF SOME PROPERTIES IN PHYSICAL MODEL OF THE SOLUTION SPACE OF 2-DOF PARALLEL PLANAR MANIPULATORS
    GAO, F
    ZHANG, XQ
    ZHAO, YS
    ZU, WB
    MECHANISM AND MACHINE THEORY, 1995, 30 (06) : 811 - 817
  • [10] Positioning the base of spatial 2-dof regional manipulators in order to reach as many arbitrarily-chosen points in space as possible
    Innocenti, C
    2005 12th International Conference on Advanced Robotics, 2005, : 587 - 594