Short-Term Load Forecasting Approach Based on Different Input Methods of One Variable: Conceptual and Validation Study

被引:0
|
作者
Aydarous, Amr A. [1 ]
Elshahed, Mostafa. A. [2 ]
Hassan, M. A. Moustafa [2 ]
机构
[1] Khatib & Alami Consultants Misr, Dept Elect, Nasr City, Ciro, Egypt
[2] Cairo Univ, Fac Engn, Elect Power & Machines Dept, Giza, Egypt
关键词
Artificial Neural Network; Input Methods; Matlab Toolbox; Multi-Stages Forecasting; Optimization; Short Term Load Forecasting; Input Data Selection; NEURAL-NETWORKS; SELECTION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrical demand forecasting is a key element within the electrical power system. STLF is considered the most significant for many processes in the Power Grid. A slight improve in the STLF accuracy may fetch a lot of benefits at both levels; enhances the grid stability, and increases economic benefits. The aim of the study is to find a simple accurate short term forecasting method. The proposed method based on the proposed concept that recognizes the many relevant factors affect the load in the short term. Lack of information about the relations between load and those factors have led to unclear methodology to deal with this uncertainty. Thus, STLF can rely on Historical Load Data only, as an observer for all influence factors. The proposed approach is implemented, to be verified, via Artificial Neural Network (ANN), by Matlab software, on four different inputs methods, all use one variable. The obtained result is auspicious. It reduces the Mean Absolute percentage Error dramatically compared to the previous methods.
引用
收藏
页码:179 / 184
页数:6
相关论文
共 50 条
  • [1] Input variable selection for ANN-based short-term load forecasting
    Drezga, I
    Rahman, S
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (04) : 1238 - 1244
  • [2] Novel input variable selection for ANN short-term load forecasting
    Gao, S.
    Shan, Y.
    Dianli Xitong Zidonghue/Automation of Electric Power Systems, 2001, 25 (22): : 41 - 44
  • [3] Short-term Load Forecasting based on Wavelet Approach
    Ghanavati, Ali Karami
    Afsharinejad, Amir
    Vafamand, Navid
    Arefi, Mohammad Mehdi
    Javadi, Mohammad Sadegh
    Catalao, Joao P. S.
    2020 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST), 2020,
  • [4] Short-term Electricity Load Forecasting in Thailand: an Analysis on Different Input Variables
    Hnin, Su Wutyi
    Jeenanunta, Chawalit
    2018 2ND INTERNATIONAL CONFERENCE ON POWER AND ENERGY ENGINEERING (ICPEE 2018), 2018, 192
  • [5] COMPARISON OF METHODS FOR SHORT-TERM LOAD FORECASTING
    DEISTLER, M
    FRAISSLER, W
    PETRITSCH, G
    SCHERRER, W
    ARCHIV FUR ELEKTROTECHNIK, 1988, 71 (06): : 389 - 397
  • [6] Short-Term Load Forecasting Methods: A Review
    Srivastava, A. K.
    Pandey, Ajay Shekhar
    Singh, Devender
    2016 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ELECTRICAL ELECTRONICS & SUSTAINABLE ENERGY SYSTEMS (ICETEESES), 2016, : 130 - 138
  • [7] Neural Network Based Approach for Short-Term Load Forecasting
    Osman, Zainab H.
    Awad, Mohamed L.
    Mahmoud, Tawfik K.
    2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 1162 - +
  • [8] Machine-Learning based methods in short-term load forecasting
    Guo W.
    Che L.
    Shahidehpour M.
    Wan X.
    Electricity Journal, 2021, 34 (01):
  • [9] Short-term load forecasting methods: An evaluation based on European data
    Taylor, James W.
    McSharry, Patrick E.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2007, 22 (04) : 2213 - 2219
  • [10] Short-term power load forecasting using integrated methods based on long short-term memory
    ZHANG WenJie
    QIN Jian
    MEI Feng
    FU JunJie
    DAI Bo
    YU WenWu
    Science China(Technological Sciences), 2020, 63 (04) : 614 - 624