Taxonomic Dimensionality Reduction in Bayesian Text Classification

被引:0
|
作者
McAllister, Richard [1 ]
Sheppard, John [1 ]
机构
[1] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA
关键词
D O I
10.1109/ICMLA.2012.93
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lexical abstraction hierarchies can be leveraged to provide semantic information that characterizes features of text corpora as a whole. This information may be used to determine the classification utility of the dimensions that describe a dataset. This paper presents a new method for preparing a dataset for probabilistic classification by determining, a priori, the utility of a very small subset of taxonomically-related dimensions via a Discriminative Multinomial Naive Bayes process. We show that this method yields significant improvements over both Discriminative Multinomial Naive Bayes and Bayesian network classifiers alone.
引用
收藏
页码:508 / 513
页数:6
相关论文
共 50 条
  • [1] Abstracting for Dimensionality Reduction in Text Classification
    McAllister, Richard A.
    Angryk, Rafal A.
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2013, 28 (02) : 115 - 138
  • [2] Dimensionality Reduction by Mutual Information for Text Classification
    刘丽珍
    宋瀚涛
    陆玉昌
    [J]. Journal of Beijing Institute of Technology, 2005, (01) : 32 - 36
  • [3] A Comparative Approach of Dimensionality Reduction Techniques in Text Classification
    Basha, Shaik Rahamat
    Rani, J. Keziya
    [J]. ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2019, 9 (06) : 4974 - 4979
  • [4] Dimensionality reduction in text classification using scatter method
    Saarikoski, Jyri
    Laurikkala, Jorma
    Jarvelin, Kalervo
    Siermala, Markku
    Juhola, Martti
    [J]. INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2014, 6 (01) : 1 - 21
  • [5] An approach to text classification using dimensionality reduction and combination of classifiers
    Jain, G
    Ginwala, A
    Aslandogan, YA
    [J]. PROCEEDINGS OF THE 2004 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI-2004), 2004, : 564 - 569
  • [6] An Efficient Approach for Dimensionality Reduction and Classification of High Dimensional Text Documents
    Kumar, Kotte Vinay
    Srinivasan, R.
    Singh, E. B.
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE, E-LEARNING AND INFORMATION SYSTEMS 2018 (DATA'18), 2018,
  • [7] Bayesian Supervised Dimensionality Reduction
    Gonen, Mehmet
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) : 2179 - 2189
  • [8] A method of dimensionality reduction by selection of components in principal component analysis for text classification
    Zhang, Yangwu
    Li, Guohe
    Zong, Heng
    [J]. FILOMAT, 2018, 32 (05) : 1499 - 1506
  • [9] POST-PROCESSING AND DIMENSIONALITY REDUCTION FOR EXTREME LEARNING MACHINE IN TEXT CLASSIFICATION
    Trusca, Maria Mihaela
    Aldea, Anamaria
    Gradinaru, Simona Elena
    Albu, Crisan
    [J]. ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2021, 55 (04): : 37 - 50
  • [10] An effective dimensionality reduction method for text classification based on TFP-tree
    Liu, Lu
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (03) : 1893 - 1905