Exponential energy decay of solutions of viscoelastic wave equations

被引:23
|
作者
Wang, Yanjin [1 ]
Wang, Yufeng [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
global existence; energy decay; viscoelastic wave equation;
D O I
10.1016/j.jmaa.2008.05.098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the nonlinear viscoelastic equation u(tt) - Delta + integral(t)(0) g(t-tau)Delta u(tau)d tau + u(t) = vertical bar u vertical bar(p-t) u in Omega x (0, infinity), with initial conditions and Dirichlet boundary condition. Under some appropriate assumption on g, by introducing a potential well we establish the global existence result for the equation above. Furthermore, we investigate explicit exponential energy decay of the viscoelastic wave equation under the potential well. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 25
页数:8
相关论文
共 50 条