Automatic Tissue Type Classification in Large-Scale Microscopic Images Using Zernike Moments

被引:1
|
作者
Gorniak, Aneta [1 ]
Skubalska-Rafajlowicz, Ewa [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Wroclaw, Poland
关键词
Image processing; Microscopic image; Histological sections; Tissue images; Large-scale images; Classification; Zernike moments;
D O I
10.1007/978-3-030-30604-5_28
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an approach in identification of histological sections of human tissue in large-scale microscopic images on the basis of sample tissue fragments from the image. The method uses pattern recognition properties of Zernike moments in the form of image descriptors consisting of sequences of Zernike moments. The goal is to acquire a robust and precise method that allows for identification of the original source of the tissue fragments in the microscopic images. The approach relies on machine learning to perform the final identification of the tissue subject from the constructed image descriptors. The method is verified by a series of experiments on a set of microscopic slides of histological sections. The results and their analysis are presented in the conclusion of the paper.
引用
收藏
页码:310 / 319
页数:10
相关论文
共 50 条
  • [1] GPU Acceleration of Zernike Moments for Large-scale Images
    Ujaldon, Manuel
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-5, 2009, : 2033 - 2040
  • [2] Tissue Recognition on Microscopic Images of Histological Sections Using Sequences of Zernike Moments
    Gorniak, Aneta
    Skubalska-Rafajlowicz, Ewa
    [J]. COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2018, 2018, 11127 : 16 - 26
  • [3] Automatic modulation classification using a large-scale array system
    [J]. Xu, Jiakang (jarko@163.com), 1600, Universidad Central de Venezuela (55):
  • [4] Using Zernike moments for analysis of images
    Babkina L.A.
    Garmai Y.P.
    Lebedev D.V.
    Pantina R.A.
    Filatov M.V.
    Isaev-Ivanov V.V.
    [J]. Numerical Analysis and Applications, 2013, 6 (02) : 131 - 144
  • [5] Classification of rice grain using new scale invariant Zernike moments
    Yaw, WC
    Raveendran, P
    Takeda, F
    Tsuzuki, T
    Kadota, H
    Shimanouchi, S
    [J]. PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 832 - 835
  • [6] Large-scale multi-label classification using unknown streaming images: Large-scale multi-label classification using unknown streaming images
    Zhang Y.
    Wang Y.
    Liu X.-Y.
    Mi S.
    Zhang M.-L.
    [J]. Pattern Recognition, 2020, 99
  • [7] Classification of motion-blurred images using Zernike and Wavelet Fourier moments
    Toxqui-Quitl, C.
    Padilla-Vivanco, A.
    Granados-Agustin, F.
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIII, 2007, 6748 : L7481 - L7481
  • [8] Zernike Moments and Machine Learning Based Gender Classification Using Facial Images
    Mahesh, Vijayalakshmi G. V.
    Raj, Alex Noel Joseph
    [J]. PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2016), 2018, 614 : 398 - 408
  • [9] Classification of damages in composite images using Zernike moments and support vector machines
    Fredo, A. R. Jac
    Abilash, R. S.
    Femi, R.
    Mythili, A.
    Kumar, C. Suresh
    [J]. COMPOSITES PART B-ENGINEERING, 2019, 168 : 77 - 86
  • [10] Vegetation Type Classification System using Pseudo Zernike Moments and ELM
    Dixit, Anita
    Hedge, Nagaratna
    Reddy, B. Eswara
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI), 2017, : 2502 - 2508