TOWARDS EFFICIENT VARIATIONAL AUTO-ENCODER USING WASSERSTEIN DISTANCE

被引:1
|
作者
Chen, Zichuan [1 ]
Liu, Peng [2 ]
机构
[1] Washington Univ St Louis, St Louis, MO 14263 USA
[2] Singapore Management Univ, Singapore, Singapore
关键词
Image reconstruction; variational autoencoder; generative models; Wasserstein distance;
D O I
10.1109/ICIP46576.2022.9897782
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
VAE, or variational auto-encoder, compresses data into latent attributes and generates new data of different varieties. VAE with KL divergence loss has been considered an effective technique for data augmentation. In this paper, we propose using Wasserstein distance as a measure of distributional similarity for the latent attributes and show its superior theoretical lower bound (ELBOW) compared with that of KL divergence (ELBOKL) under mild conditions. Using multiple experiments, we demonstrate that the new loss function converges faster and generates better quality data to aid image classification tasks. We also propose implementing a dynamically changing hyper-parameter tuning schedule to avoid the potential overfitting of ELBOW.
引用
收藏
页码:81 / 85
页数:5
相关论文
共 50 条
  • [1] Wasserstein Distance-Based Auto-Encoder Tracking
    Long Xu
    Ying Wei
    Chenhe Dong
    Chuaqiao Xu
    Zhaofu Diao
    [J]. Neural Processing Letters, 2021, 53 : 2305 - 2329
  • [2] Wasserstein Distance-Based Auto-Encoder Tracking
    Xu, Long
    Wei, Ying
    Dong, Chenhe
    Xu, Chuaqiao
    Diao, Zhaofu
    [J]. NEURAL PROCESSING LETTERS, 2021, 53 (03) : 2305 - 2329
  • [3] Wasserstein Graph Auto-Encoder
    Chu, Yan
    Li, Haozhuang
    Ning, Hui
    Zhao, Qingchao
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT I, 2022, 13155 : 85 - 99
  • [4] Fair Graph Auto-Encoder for Unbiased Graph Representations with Wasserstein Distance
    Fan, Wei
    Liu, Kunpeng
    Xie, Rui
    Liu, Hao
    Xiong, Hui
    Fu, Yanjie
    [J]. 2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1054 - 1059
  • [5] Hamiltonian Variational Auto-Encoder
    Caterini, Anthony L.
    Doucet, Arnaud
    Sejdinovic, Dino
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [6] COMPOUND VARIATIONAL AUTO-ENCODER
    Su, Shang-Yu
    Lin, Shan-Wei
    Chen, Yun-Nung
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3577 - 3581
  • [7] Interactive Guiding Sparse Auto-Encoder with Wasserstein Regularization for Efficient Classification
    Lee, Haneum
    Hur, Cheonghwan
    Ibrokhimov, Bunyodbek
    Kang, Sanggil
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [8] Variational Auto-Encoder for text generation
    Hu, Haojin
    Liao, Mengfan
    Mao, Weiming
    Liu, Wei
    Zhang, Chao
    Jing, Yanmei
    [J]. PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 595 - 598
  • [9] Efficient Calibration of Agent-Based Traffic Simulation Using Variational Auto-Encoder
    Ye, Peijun
    Zhu, Fenghua
    Lv, Yisheng
    Wang, Xiao
    Chen, Yuanyuan
    [J]. 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3077 - 3082
  • [10] Reconstruction of Porous Media Using an Information Variational Auto-Encoder
    Zhang, Ting
    Tu, Hongyan
    Xia, Pengfei
    Du, Yi
    [J]. TRANSPORT IN POROUS MEDIA, 2022, 143 (02) : 271 - 295