Electrical Impedance Tomography Reconstruction Using l1 Norms for Data and Image Terms

被引:7
|
作者
Dai, Tao [1 ]
Adler, Andy [1 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
关键词
D O I
10.1109/IEMBS.2008.4649764
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electrical Impedance Tomography (EIT) calculates the internal conductivity distribution within a body from current simulation and voltage measurements on the body surface. Two main technical difficulties of EIT are its low spatial resolution and sensitivity to measurement errors. Image reconstruction using l(1) norms allows addressing both difficulties, in comparison to traditional reconstruction using l(2) norms. A l(1) norm on the data residue term reduces the sensitivity to measurement errors, while the l(1) norm on the image prior reduces edge blurring. This paper proposes and tests a general lagged diffusivity type iterative method for EIT reconstructions. l(1) and l(2) minimizations can be flexibly chosen on the data residue and/or image prior parts. Results show the flexibility of the algorithm and the merits of the l(1) solution.
引用
收藏
页码:2721 / 2724
页数:4
相关论文
共 50 条
  • [1] Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography
    Wang, Qi
    Wang, Huaxiang
    Zhang, Ronghua
    Wang, Jinhai
    Zheng, Yu
    Cui, Ziqiang
    Yang, Chengyi
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10):
  • [2] Experimental/clinical evaluation of EIT image reconstruction with l1 data and image norms
    Mamatjan, Yasin
    Borsic, Andrea
    Guersoy, Doga
    Adler, Andy
    [J]. XV INTERNATIONAL CONFERENCE ON ELECTRICAL BIO-IMPEDANCE (ICEBI) & XIV CONFERENCE ON ELECTRICAL IMPEDANCE TOMOGRAPHY (EIT), 2013, 434
  • [3] Image Reconstruction in Electrical Impedance Tomography Using Neural Network
    Michalikova, Marketa
    Abed, Rawia
    Prauzek, Michal
    Koziorek, Jiri
    [J]. 2014 CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2014, : 39 - 42
  • [4] Image reconstruction using genetic algorithm in electrical impedance tomography
    Kim, Ho-Chan
    Boo, Chang-Jin
    Kang, Min-Jae
    [J]. NEURAL INFORMATION PROCESSING, PT 3, PROCEEDINGS, 2006, 4234 : 938 - 945
  • [5] Highly Accurate Image Reconstruction Using Electrical Impedance Tomography
    Kriz, T.
    Dusek, J.
    [J]. 2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 767 - 771
  • [6] Temporal image reconstruction in electrical impedance tomography
    Adler, Andy
    Dai, Tao
    Lionheart, William R. B.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2007, 28 (07) : S1 - S11
  • [7] A modified L1/2 regularization algorithm for electrical impedance tomography
    Fan, Wenru
    Wang, Chi
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (01)
  • [8] Image Reconstruction Using Interval Simulated Annealing in Electrical Impedance Tomography
    Martins, Thiago de Castro
    Leon Bueno de Camargo, Erick Dario
    Lima, Raul Gonzalez
    Passos Amato, Marcelo Britto
    Guerra Tsuzuki, Marcos de Sales
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (07) : 1861 - 1870
  • [9] Multimodal Image Reconstruction of Electrical Impedance Tomography Using Kernel Method
    Liu, Zhe
    Yang, Yunjie
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [10] L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve)
    Tehrani, J. Nasehi
    McEwan, A.
    Jin, C.
    van Schaik, A.
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (03) : 1095 - 1105