HETEROGENEOUS MULTISCALE METHOD FOR THE MAXWELL EQUATIONS WITH HIGH CONTRAST

被引:9
|
作者
Verfuerth, Barbara [1 ,2 ]
机构
[1] Westfalische Wilhelms Univ Munster, Angew Math, Inst Anal & Numer, Munster, Germany
[2] Univ Augsburg, Inst Math, Univ Str 14, D-86159 Augsburg, Germany
关键词
Multiscale method; finite elements; homogenization; two-scale equation; Maxwell equations; DIMENSIONAL FINITE-ELEMENTS; NUMERICAL HOMOGENIZATION; ELECTROMAGNETIC-FIELDS; ARTIFICIAL MAGNETISM; ERROR ANALYSIS; PART I; CONVERGENCE; RESONANCES; SINGULARITIES; REGULARITY;
D O I
10.1051/m2an/2018064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggest a new Heterogeneous Multiscale Method (HMM) for the (time harmonic) Maxwell scattering problem with high contrast. The method is constructed for a setting as in Bouchitte, Bourel and Felbacq [C.R. Math. Acad. Sci. Paris 347 (2009) 571-576], where the high contrast in the parameter leads to unusual effective parameters in the homogenized equation. We present a new homogenization result for this special setting, compare it to existing homogenization approaches and analyze the stability of the two-scale solution with respect to the wavenumber and the data. This includes a new stability result for solutions to time-harmonic Maxwell's equations with matrix-valued, spatially dependent coefficients. The HMM is defined as direct discretization of the two-scale limit equation. With this approach we are able to show quasi-optimality and a priori error estimates in energy and dual norms under a resolution condition that inherits its dependence on the wavenumber from the stability constant for the analytical problem. This is the first wavenumber-explicit resolution condition for time-harmonic Maxwell's equations. Numerical experiments confirm our theoretical convergence results.
引用
收藏
页码:35 / 61
页数:27
相关论文
共 50 条
  • [1] HETEROGENEOUS MULTISCALE METHOD FOR MAXWELL'S EQUATIONS
    Hochbruck, Marlis
    Maier, Bernhard
    Stohrer, Christian
    MULTISCALE MODELING & SIMULATION, 2019, 17 (04): : 1147 - 1171
  • [2] THE MULTISCALE HYBRID-MIXED METHOD FOR THE MAXWELL EQUATIONS IN HETEROGENEOUS MEDIA
    Lanteri, Stephane
    Paredes, Diego
    Scheid, Claire
    Valentin, Frederic
    MULTISCALE MODELING & SIMULATION, 2018, 16 (04): : 1648 - 1683
  • [3] A NEW HETEROGENEOUS MULTISCALE METHOD FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Ohlberger, Mario
    Verfuerth, Barbara
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3493 - 3522
  • [4] THE HETEROGENEOUS MULTISCALE METHOD FOR DISPERSIVE MAXWELL SYSTEMS
    Freese, Philip
    MULTISCALE MODELING & SIMULATION, 2022, 20 (02): : 769 - 797
  • [5] A NEW HETEROGENEOUS MULTISCALE METHOD FOR THE HELMHOLTZ EQUATION WITH HIGH CONTRAST
    Ohlberger, Mario
    Verfuerth, Barbara
    MULTISCALE MODELING & SIMULATION, 2018, 16 (01): : 385 - 411
  • [6] A wavelet multiscale method for inversion of Maxwell equations
    丁亮
    韩波
    刘家琦
    Applied Mathematics and Mechanics(English Edition), 2009, 30 (08) : 1035 - 1044
  • [7] Multiscale numerical method for nonlinear Maxwell equations
    Colin, T
    Nkonga, B
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2005, 5 (03): : 631 - 658
  • [8] A wavelet multiscale method for inversion of Maxwell equations
    Liang Ding
    Bo Han
    Jia-qi Liu
    Applied Mathematics and Mechanics, 2009, 30 : 1035 - 1044
  • [9] The mimetic multiscale method for Maxwell's equations
    Wilhelms, Wenke
    Schwarzbach, Christoph
    Caudillo-Mata, Luz Angelica
    Haber, Eldad
    GEOPHYSICS, 2018, 83 (05) : E259 - E276
  • [10] A wavelet multiscale method for inversion of Maxwell equations
    Ding, Liang
    Han, Bo
    Liu, Jia-qi
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (08) : 1035 - 1044