Detection of Mycobacterium Tuberculosis in Ziehl-Neelsen Sputum Smear Images

被引:0
|
作者
Yan, Sineng [1 ]
Liu, Hongying [1 ]
Sun, Li [1 ]
Zhou, Mei [1 ]
Xiao, ZhiRui [1 ]
Zhuang, Quanjie [2 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai, Peoples R China
[2] Shanghai Lanche Biol Technol Co Ltd, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Mycobacterium tuberculosis; image segmentation; image recognition; watershed algorithm;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Tuberculosis is one of the top 10 causes of death worldwide. In order to reduce the workload of doctors and the probability of human error, this paper presents an automatic detection algorithm for Mycobacterium tuberculosis in Ziehl-Neelsen Sputum Smear Images. The algorithm uses color feature and three morphological characters, which are aspect ratio, circularity and area. Background Equalization algorithm is proposed to utilize color feature sufficiently. This algorithm takes advantage of the watershed algorithm and the channel "a" in Lab color space. Experimental results accuracy of the proposed algorithm.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Segmentation of Touching Mycobacterium Tuberculosis from Ziehl-Neelsen Stained Sputum Smear Images
    Xu, Chao
    Zhou, Dongxiang
    Liu, Yunhui
    [J]. MIPPR 2015: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2015, 9812
  • [2] Comparison of enhancement method for Ziehl-Neelsen stain sputum smear images
    Yusoff, Ainul Kamilah Mohd
    Raof, Rafikha Alaina A.
    Noor, Siti Suraiya Md
    [J]. INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, ICOBE 2021, 2023, 2562
  • [4] ZIEHL-NEELSEN STAINING OF SPUTUM - NOTES
    MARKS, J
    [J]. TUBERCLE, 1974, 55 (03): : 241 - 244
  • [5] An Adaptive Filtering Approach for Segmentation of Tuberculosis Bacteria in Ziehl-Neelsen Sputum Stained Images
    Ayma, V.
    De Lamare, R.
    Castaneda, B.
    [J]. 2015 LATIN AMERICA CONGRESS ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2015,
  • [6] BULK STAINING OF SPUTUM BY THE ZIEHL-NEELSEN METHOD
    FODOR, T
    [J]. TUBERCLE, 1984, 65 (02): : 123 - 125
  • [7] Segmentation and Classification of Mycobacterium from Ziehl Neelsen Stained Sputum Images for Tuberculosis Diagnosis
    Mithra, K. S.
    Emmanuel, W. R. Sam
    [J]. 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 1672 - 1676
  • [8] Fuchsin fluorescence in Mycobacterium tuberculosis:: The Ziehl-Neelsen stain in a new light
    Shapiro, Howard M.
    Haenscheid, Thomas
    [J]. JOURNAL OF MICROBIOLOGICAL METHODS, 2008, 74 (2-3) : 119 - 120
  • [9] Detection of Mycobacterium Tuberculosis in Ziehl-Neelsen Stained Tissue Images using Zernike Moments and Hybrid Multilayered Perceptron Network
    Osman, M. K.
    Mashor, M. Y.
    Jaafar, H.
    [J]. IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010), 2010,
  • [10] Periphery to centre quality control of sputum smear microscopy and 'rapid fading' of Ziehl-Neelsen staining
    de Kantor, IN
    Laszlo, A
    Vazquez, L
    Reniero, A
    Latini, O
    Urbanzcik, R
    [J]. INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2000, 4 (09) : 887 - 888