Chemogenomics is a new strategy in drug discovery which, in principle. searches for all molecules that are capable of interacting with any biological target. Because of the almost infinite number of drug-like organic molecules, this is an impossible task. Therefore chemogenomics has been defined as the investigation of classes of compounds (libraries) against families of functionally related proteins. In this definition, chemogenomics deals with the systematic analysis of chemical-biological interactions. Congeneric series of chemical analogs are probes to investigate their action on specific target classes, e.g., GPCRs, kinases, phosphodiesterases, ion channels. serine proteases, and others. Whereas such a strategy developed in pharmaceutical industry almost 20 years ago, it is now more systematically applied in the search for target- and subtype-specific ligands. The term "privileged structures" has been defined for scaffolds, such as the benzodiazepines, which very often produce biologically active analogs in a target family, in this case in the class of G-protein-coupled receptors. The SOSA approach is a strategy to modify the selectivity of biologically active compounds, generating new drug candidates from the side activities of therapeutically used drugs.