Predictions and verifications of early-age stress development in hydrating blended cement concrete

被引:20
|
作者
Pane, Ivindra [1 ]
Hansen, Will [2 ]
机构
[1] Bandung Inst Technol, Dept Civil Engn, Bandung 40132, Indonesia
[2] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
关键词
Aging; Hydration; Creep; Relaxation; Early-age; Autogeneous; Shrinkage; Strength;
D O I
10.1016/j.cemconres.2008.05.001
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A procedure for calculating the early-age stress development in concrete incorporating the aging viscoelastic effects is presented in this paper. The important features of the present procedure are the use of tensile creep and inclusion of heat of hydration. The latter is used as an aging parameter and incorporates the effect of temperature on age-dependent material parameters. To validate stress predictions, experiments to measure early-age stress development in concrete mixes made of blended cements were conducted. The predictions were found to be accurate and could be improved when the effect of temperature was included. Effects of using mineral additives (fly ash, slag, and silica fume) appeared to be beneficial in reducing the risk of cracking at early ages. The effect of temperature gradient was also studied when the stress calculation was applied to pavement or foundation slabs resting on a very stiff subgrade. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1315 / 1324
页数:10
相关论文
共 50 条
  • [1] Investigation on key properties controlling early-age stress development of blended cement concrete
    Pane, Ivindra
    Hansen, Will
    CEMENT AND CONCRETE RESEARCH, 2008, 38 (11) : 1325 - 1335
  • [2] Early-age creep and shrinkage of blended cement concrete
    Li, H
    Wee, TH
    Wong, SF
    ACI MATERIALS JOURNAL, 2002, 99 (01) : 3 - 10
  • [3] Properties and Early-Age Cracking Potential of Blended Cement Concrete
    Ge, Zhi
    Wang, Kejin
    Gao, Zhili
    MATERIAL, DESIGN, CONSTRUCTION, MAINTENANCE, AND TESTING OF PAVEMENT, 2009, (193): : 163 - 170
  • [4] Predicting early-age temperatures of blended-cement concrete
    Paine, K. A.
    Dhir, R. K.
    Zheng, L.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2006, 159 (04) : 163 - 170
  • [5] Microstructural Modeling of Early-Age Creep in Hydrating Cement Paste
    Quang Huy Do
    Bishnoi, Shashank
    Scrivener, Karen L.
    JOURNAL OF ENGINEERING MECHANICS, 2016, 142 (11)
  • [6] Modeling early-age stress development of restrained concrete
    Byard, Benjamin E.
    Schindler, Anton K.
    MATERIALS AND STRUCTURES, 2015, 48 (1-2) : 435 - 450
  • [7] Modeling early-age stress development of restrained concrete
    Benjamin E. Byard
    Anton K. Schindler
    Materials and Structures, 2015, 48 : 435 - 450
  • [8] Investigation of the early-age microstructural development of hydrating cement pastes through electrical resistivity measurements
    Yousuf, Farqad
    Wei Xiaosheng
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2020, 13
  • [9] Experimental study on the early-age stress behavior of cement concrete pavement
    Hu C.-B.
    Sun Z.-H.
    Wang L.-J.
    Gongcheng Lixue/Engineering Mechanics, 2021, 38 (06): : 163 - 174
  • [10] Early-age creep effects of cement concrete pavement
    Hu C.-B.
    Sun Z.-H.
    Wang L.-J.
    Gongcheng Lixue/Engineering Mechanics, 2022, 39 (04): : 123 - 137