An open-source framework to model present and future marine species distributions at local scale

被引:19
|
作者
Lasram, Frida Ben Rais [1 ]
Hattab, Tarek [1 ,2 ]
Nogues, Quentin [3 ]
Beaugrand, Gregory [1 ]
Dauvin, Jean Claude [4 ]
Halouani, Ghassen [3 ,5 ]
Le Loc'h, Francois [6 ]
Niquil, Nathalie [3 ]
Leroy, Boris [7 ]
机构
[1] Univ Lille, Univ Littoral Cote Opale, LOG, UMR 8187,CNRS, F-62930 Wimereux, France
[2] Univ Montpellier, IFREMER, CNRS, MARBEC,IRD Sete, Ave Jean Monet, Sete, France
[3] Normandie Univ UNICAEN, UMR BOREA, MNHN, UPMC,UCN,CNRS 7208,IRD 207, CS 14032, F-14000 Caen, France
[4] Normandie Univ UNICAEN, UR, UMR M2C, CNRS 6143,UCN, 24 Rue Tilleuls, F-14000 Caen, France
[5] HMMN, Unite Halieut Manche Mer Nord Ifremer, F-62200 Boulogne Sur Mer, France
[6] Univ Brest, IUEM, LEMAR, IFREMER,IRD,CNRS, F-29280 Plouzane, France
[7] UCN, UMR BOREA, UPMC, MNHN,CNRS 7208,IRD 207, 43 Rue Cuvier, F-75005 Paris, France
关键词
Bioclimatic envelope models; Habitat models; Pseudo-absences; Vertical gradient; Automated modelling framework; Future projections; CLIMATE-CHANGE; ENGLISH-CHANNEL; IMPACTS; BIODIVERSITY; ECOSYSTEMS; WEB; SUITABILITY; PATTERNS; PLATFORM; FISHES;
D O I
10.1016/j.ecoinf.2020.101130
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Species Distribution Models (SDMs) are useful tools to project potential future species distributions under climate change scenarios. Despite the ability to run SDMs in recent and reliable tools, there are some misuses and proxies that are widely practiced and rarely addressed together, particularly when dealing with marine species. In this paper, we propose an open-source framework that includes (i) a procedure for homogenizing occurrence data to reduce the influence of sampling bias, (ii) a procedure for generating pseudo-absences, (iii) a hierarchical-filter approach, (iv) full incorporation of the third dimension by considering climatic variables at multiple depths and (v) building of maps that predict current and potential future ranges of marine species. This framework is available for non-modeller ecologists interested in investigating future species ranges with a userfriendly script. We investigated the robustness of the framework by applying it to marine species of the Eastern English Channel. Projections were built for the middle and the end of this century under RCP2.6 and RCP8.5 scenarios.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] An open-source machine learning framework for global analyses of parton distributions
    Ball, Richard D.
    Carrazza, Stefano
    Cruz-Martinez, Juan
    Del Debbio, Luigi
    Forte, Stefano
    Giani, Tommaso
    Iranipour, Shayan
    Kassabov, Zahari
    Latorre, Jose, I
    Nocera, Emanuele R.
    Pearson, Rosalyn L.
    Rojo, Juan
    Stegeman, Roy
    Schwan, Christopher
    Ubiali, Maria
    Voisey, Cameron
    Wilson, Michael
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (10):
  • [2] An open-source machine learning framework for global analyses of parton distributions
    Richard D. Ball
    Stefano Carrazza
    Juan Cruz-Martinez
    Luigi Del Debbio
    Stefano Forte
    Tommaso Giani
    Shayan Iranipour
    Zahari Kassabov
    Jose I. Latorre
    Emanuele R. Nocera
    Rosalyn L. Pearson
    Juan Rojo
    Roy Stegeman
    Christopher Schwan
    Maria Ubiali
    Cameron Voisey
    Michael Wilson
    The European Physical Journal C, 2021, 81
  • [3] Using Open-Source Data in Correlative Species Distribution Modeling of Marine Species
    Morales-Ramirez, Carlos A.
    Pang, Pearlyn Y.
    AMERICAN BIOLOGY TEACHER, 2018, 80 (06): : 457 - 461
  • [4] Circuit Investigations With Open-Source Miniaturized Microscopes: Past, Present and Future
    Aharoni, Daniel
    Hoogland, Tycho M.
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2019, 13
  • [5] Tsdat: An Open-Source Data Standardization Framework for Marine Energy and Beyond
    Lansing, Carina
    Levin, Maxwell
    Sivaraman, Chitra
    Fao, Rebecca
    Driscoll, Frederick
    OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [6] Application of Open-Source Big-Data Framework in Marine Information Processing
    Gao, Xiaoxing
    Wang, Hanxin
    Li, Xiaoxia
    JOURNAL OF COASTAL RESEARCH, 2019, : 187 - 190
  • [7] ROSurgical: An Open-Source Framework for Telesurgery
    Heemeyer, Florian
    Boehler, Quentin
    Leuenberger, Fabio
    Nelson, Bradley J.
    2024 INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS, ISMR 2024, 2024,
  • [8] ReFr: An Open-Source Reranker Framework
    Bikel, Daniel M.
    Hall, Keith B.
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 756 - 758
  • [9] Open-Source Model Checking
    Grosu, Radu
    Huang, X.
    Jain, S.
    Smolka, S. A.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2006, 144 (03) : 27 - 44
  • [10] Open-Source Model for Biotech
    Sable, Michael
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2010, 30 (16): : 6 - +