Testing the independence of two non-stationary random processes with applications to biometric authentication

被引:3
|
作者
Balakirsky, Vladimir B. [1 ]
Ghazaryan, Anahit R. [1 ]
Vinck, A. J. Han [1 ]
机构
[1] Univ Duisburg Essen, Inst Expt Math, D-45326 Essen, Germany
关键词
D O I
10.1109/ISIT.2007.4557622
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an algorithm for testing the independence of two non-stationary random processes, which is based on the transformation of realizations of the processes to q-ary vectors whose components are uniformly distributed over the set {0,..., q - 1}. An application of the algorithm to the biometric authentication problem brings the false acceptance rate that does not depend on the probability distribution over the templates space and exponentially decreases with the number of independent biometric parameters available to an observer.
引用
收藏
页码:2671 / 2675
页数:5
相关论文
共 50 条
  • [1] An algorithm for biometric authentication based on the model of non-stationary random processes
    Balakirsky, Vladimir B.
    Ghazaryan, Anahit R.
    Vinck, A. J. Han
    [J]. ADVANCES IN BIOMETRICS, PROCEEDINGS, 2007, 4642 : 319 - +
  • [2] Sequential Random Distortion Testing of Non-Stationary Processes
    Khanduri, Prashant
    Pastor, Dominique
    Sharma, Vinod
    Varshney, Pramod K.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (21) : 5450 - 5462
  • [3] ON SEQUENTIAL RANDOM DISTORTION TESTING OF NON-STATIONARY PROCESSES
    Khanduri, Prashant
    Pastor, Dominique
    Sharma, Vinod
    Varshney, Pramod K.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 3944 - 3948
  • [4] NUMERICAL SIMULATION OF STATIONARY AND NON-STATIONARY GAUSSIAN RANDOM PROCESSES
    FRANKLIN, JN
    [J]. SIAM REVIEW, 1965, 7 (01) : 68 - &
  • [5] Weak convergence of non-stationary multivariate marked processes with applications to martingale testing
    Escanciano, J. Carlos
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (07) : 1321 - 1336
  • [6] POWER SPECTRAL ANALYSIS OF NON-STATIONARY RANDOM PROCESSES
    PRIESTLEY, MB
    [J]. JOURNAL OF SOUND AND VIBRATION, 1967, 6 (01) : 86 - +
  • [7] A comparison of two non-stationary degradation processes
    Nicolai, Robin P.
    Dekker, R.
    [J]. RISK, RELIABILITY AND SOCIETAL SAFETY, VOLS 1-3: VOL 1: SPECIALISATION TOPICS; VOL 2: THEMATIC TOPICS; VOL 3: APPLICATIONS TOPICS, 2007, : 469 - 476
  • [8] Spectral characteristics of non-stationary random processes: Theory and applications to linear structural models
    Barbato, M.
    Conte, J. P.
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2008, 23 (04) : 416 - 426
  • [9] Testing stationary processes for independence
    Morvai, Gusztav
    Weiss, Benjamin
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (04): : 1219 - 1225
  • [10] A translation model for non-stationary, non-Gaussian random processes
    Ferrante, FJ
    Arwade, SR
    Graham-Brady, LL
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2005, 20 (03) : 215 - 228