Nevanlinna formula for the truncated matrix trigonometric moment problem

被引:2
|
作者
Zagorodnyuk, S. M. [1 ]
机构
[1] Kharkov Natl Univ, Kharkov, Ukraine
关键词
Hilbert Space; Linear Span; Moment Problem; Linear Contraction; Defect Number;
D O I
10.1007/s11253-013-0710-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper continues the investigation of the truncated matrix trigonometric moment problem originated by the author in Ukr. Mat. Zh., 63, No. 6, 786-797 (2011). The Nevanlinna formula for the indicated moment problem is deduced in the general case. It is assumed that there is more than one moment and that the moment problem is solvable and has more than one solution. The coefficients of the corresponding matrix linear fractional transformation are expressed in the explicit form via the given moments. Simple determinacy conditions are presented for the moment problem.
引用
收藏
页码:1199 / 1214
页数:16
相关论文
共 50 条
  • [1] Nevanlinna formula for the truncated matrix trigonometric moment problem
    S. M. Zagorodnyuk
    Ukrainian Mathematical Journal, 2013, 64 : 1199 - 1214
  • [2] The truncated matrix trigonometric moment problem with an open gap
    Zagorodnyuk, Sergey
    CONCRETE OPERATORS, 2015, 2 (01): : 17 - 26
  • [3] THE NEVANLINNA-TYPE FORMULA FOR THE MATRIX HAMBURGER MOMENT PROBLEM
    Zagorodnyuk, S. M.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2012, 18 (04): : 387 - 400
  • [4] ON MAXIMAL WEIGHT SOLUTIONS IN A TRUNCATED TRIGONOMETRIC MATRIX MOMENT PROBLEM
    Lasarow, Andreas
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2010, 43 (02) : 117 - 128
  • [5] Note on extremal solutions of the truncated trigonometric matrix moment problem
    Hu Yong-Jian
    Zhan Xu-Zhou
    Chen Gong-Ning
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 167 - 170
  • [6] On the truncated operator trigonometric moment problem
    Zagorodnyuk, Sergey
    CONCRETE OPERATORS, 2015, 2 (01): : 37 - 46
  • [7] The Nevanlinna parametrization for a matrix moment problem
    Lopez-Rodriguez, P
    MATHEMATICA SCANDINAVICA, 2001, 89 (02) : 245 - 267
  • [8] Szegő polynomials and the truncated trigonometric moment problem
    X. Li
    A. Sri Ranga
    The Ramanujan Journal, 2006, 12 : 461 - 472
  • [9] Szego polynomials and the truncated trigonometric moment problem
    Li, X.
    Ranga, A. Sri
    RAMANUJAN JOURNAL, 2006, 12 (03): : 461 - 472
  • [10] A Schur–Nevanlinna Type Algorithm for the Truncated Matricial Hausdorff Moment Problem
    Bernd Fritzsche
    Bernd Kirstein
    Conrad Mädler
    Complex Analysis and Operator Theory, 2021, 15