Source Code Retrieval for Bug Localization using Latent Dirichlet Allocation

被引:139
|
作者
Lukins, Stacy K. [1 ]
Kraft, Nicholas A. [1 ]
Etzkorn, Letha H. [1 ]
机构
[1] Univ Alabama, Huntsville, AL 35899 USA
关键词
D O I
10.1109/WCRE.2008.33
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In bug localization, a developer uses information about a bug to locate the portion of the source code to modify to correct the bug. Developers expend considerable effort performing this task. Some recent static techniques for automatic bug localization have been built around modern information retrieval (IR) models such as latent semantic indexing (LSI); however, latent Dirichlet allocation (LDA), a modular and extensible IR model, has significant advantages over both LSI and probabilistic LSI (pLSI). In this paper we present an LDA-based static technique for automating bug localization. We describe the implementation of our technique and three case studies that measures its effectiveness. For two of the case studies performed using LSI. The results demonstrate our LDA-based technique performs atleast as well as the LSI-based techniques for all bugs and performs better, often significantly so, than the LSI-based techniques for most bugs.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 50 条
  • [1] Bug localization using latent Dirichlet allocation
    Lukins, Stacy K.
    Kraft, Nicholas A.
    Etzkorn, Letha H.
    [J]. INFORMATION AND SOFTWARE TECHNOLOGY, 2010, 52 (09) : 972 - 990
  • [2] Source Code Retrieval for Bug Localization using Bug Report
    Swe, Kyaw Ei Ei
    Oo, Hnin Min
    [J]. 2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 241 - 247
  • [3] TopicXP: Exploring Topics in Source Code using Latent Dirichlet Allocation
    Savage, Trevor
    Dit, Bogdan
    Gethers, Malcom
    Poshyvanyk, Denys
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE, 2010,
  • [4] Exploiting spatial code proximity and order for improved source code retrieval for bug localization
    Sisman, Bunyamin
    Akbar, Shayan A.
    Kak, Avinash C.
    [J]. JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS, 2017, 29 (01)
  • [5] Bug Localization Model in Source Code Using Ontologies
    Da Silva, Alisson Solitto
    Garcia, Rogerio Eduardo
    Botega, Leonardo Castro
    [J]. IEEE ACCESS, 2023, 11 : 98542 - 98557
  • [6] The Sensitivity of Latent Dirichlet Allocation for Information Retrieval
    Park, Laurence A. F.
    Ramamohanarao, Kotagiri
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 176 - 188
  • [7] An Approach for Multimodal Medical Image Retrieval using Latent Dirichlet Allocation
    Vikram, Mandikal
    Anantharaman, Aditya
    Suhas, B. S.
    Kamath, Sowmya S.
    [J]. PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD, 2019, : 44 - 51
  • [8] Unsupervised Object Localization with Latent Dirichlet Allocation
    Yang, Tong-feng
    Ma, Jun
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ICCSAI 2013), 2013, : 230 - 234
  • [9] Comparing Hierarchical Dirichlet Process with Latent Dirichlet Allocation in Bug Report Multiclass Classification
    Limsettho, Nachai
    Hata, Hideaki
    Matsumoto, Ken-ichi
    [J]. 2014 15TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2014, : 137 - 142
  • [10] Breast Histopathological Image Retrieval Based on Latent Dirichlet Allocation
    Ma, Yibing
    Jiang, Zhiguo
    Zhang, Haopeng
    Xie, Fengying
    Zheng, Yushan
    Shi, Huaqiang
    Zhao, Yu
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (04) : 1114 - 1123