Finding Hidden Cliques of Size √N/e in Nearly Linear Time

被引:0
|
作者
Deshpande, Yash [1 ]
Montanari, Andrea [1 ,2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
Random graphs; Average case complexity; Approximate message passing; Belief propagation; Local algorithms; Sparse recovery; EIGENVALUES; SUBMATRICES;
D O I
10.1007/s10208-014-9215-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider an Erdos-Renyi random graph in which each edge is present independently with probability , except for a subset of the vertices that form a clique (a completely connected subgraph). We consider the problem of identifying the clique, given a realization of such a random graph. The algorithm of Dekel et al. (ANALCO. SIAM, pp 67-75, 2011) provably identifies the clique in linear time, provided . Spectral methods can be shown to fail on cliques smaller than . In this paper we describe a nearly linear-time algorithm that succeeds with high probability for vertical bar C-N vertical bar (1 - epsilon) N/root e Delta for any epsilon > 0. This is the first algorithm that provably improves over spectral methods. We further generalize the hidden clique problem to other background graphs (the standard case corresponding to the complete graph on vertices). For large-girth regular graphs of degree (Delta + 1) we prove that so-called local algorithms succeed if vertical bar C-N vertical bar (1 - epsilon) N/root e Delta and fail if vertical bar C-N vertical bar (1 - epsilon) N/root e Delta.
引用
收藏
页码:1069 / 1128
页数:60
相关论文
共 50 条
  • [1] Finding Hidden Cliques in Linear Time with High Probability
    Dekel, Yael
    Gurel-Gurevich, Ori
    Peres, Yuval
    COMBINATORICS PROBABILITY & COMPUTING, 2014, 23 (01): : 29 - 49
  • [2] Finding Hidden Cliques of Size N/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{N/e}$$\end{document} in Nearly Linear Time
    Yash Deshpande
    Andrea Montanari
    Foundations of Computational Mathematics, 2015, 15 (4) : 1069 - 1128
  • [3] NEARLY LINEAR TIME
    GUREVICH, Y
    SHELAH, S
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 363 : 108 - 118
  • [4] Nearly Maximum Flows in Nearly Linear Time
    Sherman, Jonah
    2013 IEEE 54TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2013, : 263 - 269
  • [5] Linear-time enumeration of isolated cliques
    Ito, H
    Iwama, K
    Osumi, T
    ALGORITHMS - ESA 2005, 2005, 3669 : 119 - 130
  • [6] FINDING NEIGHBORS OF EQUAL SIZE IN LINEAR QUADTREES AND OCTREES IN CONSTANT TIME
    SCHRACK, G
    CVGIP-IMAGE UNDERSTANDING, 1992, 55 (03): : 221 - 230
  • [7] On λ-backbone coloring of cliques with tree backbones in linear time
    Michalik, Krzysztof
    Turowski, Krzysztof
    JOURNAL OF GRAPH THEORY, 2024, 107 (01) : 5 - 28
  • [8] Finding top-N pseudo-cliques in simple graph
    Okubo, Yoshiaki
    Haraguchi, Makoto
    WMSCI 2005: 9TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL 3, 2005, : 215 - 220
  • [9] Spectral Hypergraph Sparsifiers of Nearly Linear Size
    Kapralov, Michael
    Krauthgamer, Robert
    Tardos, Jakab
    Yoshida, Yuichi
    2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 1159 - 1170
  • [10] A nearly-m log n time solver for SDD linear systems
    Koutis, Ioannis
    Miller, Gary L.
    Peng, Richard
    2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, : 590 - 598