Evaluating Random Forests for Survival Analysis Using Prediction Error Curves

被引:1
|
作者
Mogensen, Ulla B. [1 ]
Ishwaran, Hemant [2 ]
Gerds, Thomas A.
机构
[1] Univ Copenhagen, Dept Biostat, DK-1014 Copenhagen, Denmark
[2] Univ Miami, Coral Gables, FL 33124 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2012年 / 50卷 / 11期
基金
美国国家科学基金会;
关键词
survival prediction; prediction error curves; random survival forest; R; MODELS; INFARCTION; SELECTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Prediction error curves are increasingly used to assess and compare predictions in survival analysis. This article surveys the R package pec which provides a set of functions for efficient computation of prediction error curves. The software implements inverse probability of censoring weights to deal with right censored data and several variants of cross-validation to deal with the apparent error problem. In principle, all kinds of prediction models can be assessed, and the package readily supports most traditional regression modeling strategies, like Cox regression or additive hazard regression, as well as state of the art machine learning methods such as random forests, a nonparametric method which provides promising alternatives to traditional strategies in low and high-dimensional settings. We show how the functionality of pec can be extended to yet unsupported prediction models. As an example, we implement support for random forest prediction models based on the R packages randomSurvivalForest and party. Using data of the Copenhagen Stroke Study we use pec to compare random forests to a Cox regression model derived from stepwise variable selection.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [1] Conformal prediction using random survival forests
    Bostrom, Henrik
    Asker, Lars
    Gurung, Ram
    Karlsson, Isak
    Lindgren, Tony
    Papapetrou, Panagiotis
    [J]. 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 812 - 817
  • [2] An application of survival analysis to disruption prediction via Random Forests
    Tinguely, R. A.
    Montes, K. J.
    Rea, C.
    Sweeney, R.
    Granetz, R. S.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (09)
  • [3] Brain Tumor Segmentation and Survival Prediction Using a Cascade of Random Forests
    Lefkovits, Szidonia
    Szilagyi, Laszlo
    Lefkovits, Laszlo
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 334 - 345
  • [4] RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis
    Jin, Ziwei
    Shang, Jiaxing
    Zhu, Qianwen
    Ling, Chen
    Xie, Wu
    Qiang, Baohua
    [J]. WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT II, 2020, 12343 : 503 - 515
  • [5] Prediction of long-term survival after gastrectomy using random survival forests
    Rahman, S. A.
    Maynard, N.
    Trudgill, N.
    Crosby, T.
    Park, M.
    Wahedally, H.
    Underwood, T. J.
    Cromwell, D. A.
    [J]. BRITISH JOURNAL OF SURGERY, 2021, 108 (11) : 1341 - 1350
  • [6] Addressing Measurement Error in Random Forests Using Quantitative Bias Analysis
    Jiang, Tammy
    Gradus, Jaimie L.
    Lash, Timothy L.
    Fox, Matthew P.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (09) : 1830 - 1840
  • [7] Rectal Cancer Outcome Prediction Based On Institutional Data with Random Forests and Random Survival Forests
    Huang, M.
    Zhong, H.
    Liu, D.
    Gabriel, P.
    Ben-Josef, E.
    Yin, L.
    Geng, H.
    Cheng, C.
    Bilker, W.
    Xiao, Y.
    [J]. MEDICAL PHYSICS, 2017, 44 (06)
  • [8] Head and Neck Cancer Survival Outcome Prediction Based On NRG Oncology RTOG 0522 with Random Forests and Random Survival Forests
    Huang, M.
    Cheng, C.
    Geng, H.
    Zhong, H.
    Wang, J.
    Lin, A.
    Guttmann, D.
    van Soest, J.
    Dekker, A.
    Bilker, W.
    Zhang, Z.
    Rosenthal, D.
    Axelrod, R.
    Galvin, J.
    Frank, S.
    Thorstad, W.
    Huth, B.
    Hsu, A.
    Trotti, A.
    Zhang, Q.
    Xiao, Y.
    [J]. MEDICAL PHYSICS, 2017, 44 (06)
  • [9] The AUGIS Survival Predictor: Prediction of Long-Term and Conditional Survival After Esophagectomy Using Random Survival Forests
    Rahman, Saqib A.
    Walker, Robert C.
    Maynard, Nick
    Trudgill, Nigel
    Crosby, Tom A.
    Cromwell, David J.
    Underwood, Timothy
    NOGCA Project Team AUGIS
    [J]. ANNALS OF SURGERY, 2023, 277 (02) : 267 - 274
  • [10] Prediction of glycosylation sites using random forests
    Hamby, Stephen E.
    Hirst, Jonathan D.
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)