Over the last twenty years, composite materials, especially carbon epoxy, have developed as part of the repair and strengthening of reinforced concrete structures. This is mainly due to their very good mechanical performance as well as their easy implementation, which is fast and unobtrusive. However, composites also have a number of limitations that make the alternatives advantageous, for example their very high price, their incompatibility with sustainable development, and their very low efficiency ratio. Also, although they are adapted to various solicitations (and corresponding structural elements) FRP are used essentially for flexural strengthening. The reliability of the strengthening method is generally study for the ultimate performance (ultimate load and ductility) or to the performance at the service limit state (crack opening, deflection). The objective of this study is to assess potential alternative solutions based on textile reinforced concrete (TRC) mainly in the control of cracking in reinforcement (undamaged beams), or hybrid solutions combining TRC and rods (carbon, glass or both) when it is important to satisfy the two limit states (ultimate and service) as part of the repair (previously damaged beams). The resulting performance will be compared to externally bonded FRP solutions.