Remarks on Global Optimization Using Space-Filling Curves

被引:0
|
作者
Lera, Daniela [1 ]
Sergeyev, Yaroslav [2 ,3 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Cagliari, Italy
[2] Univ Cagliari, Dipartimento Ingn Informat Modellist Elettron & S, Cagliari, Italy
[3] Lobachevsky State Univ Nizhni Novgorod, Nizhnii Novgorod, Russia
基金
俄罗斯科学基金会;
关键词
LIPSCHITZ; ALGORITHMS;
D O I
10.1063/1.4965344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of finding the global minimum of real function on a set S subset of R-N occurs in many real world problems. In this paper, the global optimization problem with a multiextremal objective function satisfying the Lipschitz condition over a hypercube is considered. We propose a local tuning technique that adaptively estimates the local Lipschitz constants over different zones of the search region and a technique, called the local improvement, in order to accelerate the search. Peano-type space-filling curves for reduction of the dimension of the problem are used. Convergence condition are given. Numerical experiments executed on several hundreds of test functions show quite a promising performance of the introduced acceleration techniques.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Global optimization with space-filling curves
    Goertzel, B
    APPLIED MATHEMATICS LETTERS, 1999, 12 (08) : 133 - 135
  • [2] Lipschitz and Holder global optimization using space-filling curves
    Lera, D.
    Sergeyev, Ya. D.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (1-2) : 115 - 129
  • [3] Global Optimization Using Space-Filling Curves and Measure-Preserving Transformations
    Oliveira, Hime A. E., Jr.
    Petraglia, Antonio
    SOFT COMPUTING IN INDUSTRIAL APPLICATIONS, 2011, 96 : 121 - +
  • [4] A note on space-filling visualizations and space-filling curves
    Wattenberg, M
    INFOVIS 05: IEEE Symposium on Information Visualization, Proceedings, 2005, : 181 - 186
  • [5] Fuzzification using space-filling curves
    Elshafei, M
    Ahmed, MS
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2001, 7 (02): : 145 - 157
  • [6] Space-Filling Curves
    Holbrook, John
    MATHEMATICAL INTELLIGENCER, 1997, 19 (01): : 69 - 71
  • [7] Space-filling curves
    R. C. Mittal
    Resonance, 2000, 5 (12) : 26 - 33
  • [8] Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants
    Lera, Daniela
    Sergeyev, Yaroslav D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 23 (1-3) : 328 - 342
  • [9] GOSH: derivative-free global optimization using multi-dimensional space-filling curves
    Lera, Daniela
    Sergeyev, Yaroslav D.
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 71 (01) : 193 - 211
  • [10] GOSH: derivative-free global optimization using multi-dimensional space-filling curves
    Daniela Lera
    Yaroslav D. Sergeyev
    Journal of Global Optimization, 2018, 71 : 193 - 211