Training Strategies for a Lower Limb Rehabilitation Robot Based on Impedance Control

被引:0
|
作者
Hu, Jin [1 ]
Hou, Zengguang [1 ]
Zhang, Feng [1 ]
Chen, Yixiong [1 ]
Li, Pengfeng [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing 100190, Peoples R China
关键词
SYSTEM;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper proposes three training strategies based on impedance control, including passive training, damping-active training and spring-active training, for a 3-DOF lower limb rehabilitation robot designed for patients with paraplegia or hemiplegia. Controllers with similar structure are developed for these training strategies, consisting of dual closed loops, the outer impedance control loop and the inner position/velocity control loop, known as position-based impedance control method. Simulation results verify that position-based impedance control approach is feasible to accomplish the training strategies.
引用
收藏
页码:6032 / 6035
页数:4
相关论文
共 50 条
  • [1] Control strategies for lower limb rehabilitation robot
    Chen, Jiangcheng
    Zhang, Xiaodong
    Wang, He
    Shi, Qiangyong
    Li, Rui
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2014, : 121 - 125
  • [2] Position Based Impedance Control Strategy for a Lower Limb Rehabilitation Robot
    Liang, Xu
    Wang, Weiqun
    Hou, Zeng-Guang
    Ren, Shixin
    Wang, Jiaxing
    Shi, Weiguo
    Peng, Liang
    Su, Tingting
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 437 - 441
  • [3] Impedance Control for a Lower-Limb Rehabilitation Robot
    Chen, Xin
    Chen, Weihai
    Wang, Jianhua
    Zhang, Jianbin
    [J]. PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 1212 - 1217
  • [4] Dynamics Based Fuzzy Adaptive Impedance Control for Lower Limb Rehabilitation Robot
    Liang, Xu
    Wang, Weiqun
    Hou, Zengguang
    Xu, Zihao
    Ren, Shixin
    Wang, Jiaxing
    Peng, Liang
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VII, 2018, 11307 : 316 - 326
  • [5] sEMG-based impedance control for lower-limb rehabilitation robot
    Vahab Khoshdel
    Alireza Akbarzadeh
    Nadia Naghavi
    Ali Sharifnezhad
    Mahdi Souzanchi-Kashani
    [J]. Intelligent Service Robotics, 2018, 11 : 97 - 108
  • [6] Passive Training Control for the Lower Limb Rehabilitation Robot
    Lv, Xianyao
    Yang, Chifu
    Li, Xiang
    Han, Junwei
    Jiang, Feng
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2017, : 904 - 909
  • [7] sEMG-based impedance control for lower-limb rehabilitation robot
    Khoshdel, Vahab
    Akbarzadeh, Alireza
    Naghavi, Nadia
    Sharifnezhad, Ali
    Souzanchi-Kashani, Mahdi
    [J]. INTELLIGENT SERVICE ROBOTICS, 2018, 11 (01) : 97 - 108
  • [8] An FES-assisted Training Strategy Combined with Impedance Control for a Lower Limb Rehabilitation Robot
    Chen, Yixiong
    Hu, Jin
    Wang, Weiqun
    Peng, Liang
    Peng, Long
    Hou, Zeng-Guang
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 2037 - 2042
  • [9] Implementation of Active Training for an Upper-limb Rehabilitation Robot Based on Impedance Control
    Peng, Liang
    Hou, Zeng-Guang
    Kasabov, Nikola
    Peng, Long
    Hu, Jin
    Wang, Weiqun
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 5453 - 5458
  • [10] An impedance control method of lower limb exoskeleton rehabilitation robot based on predicted forward dynamics
    Wang, Yuefei
    Liu, Zhen
    Zhu, Liucun
    Li, Xiaoying
    Wang, Huaibin
    [J]. 2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1515 - 1518