ProDebNet: projector deblurring using a convolutional neural network

被引:11
|
作者
Kageyama, Yuta [1 ]
Isogawa, Mariko [1 ]
Iwai, Daisuke [1 ,2 ]
Sato, Kosuke [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Osaka 5650871, Japan
[2] JST, PRESTO, Tokyo 1020076, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
NONRIGID SURFACE;
D O I
10.1364/OE.396159
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Projection blur can occur in practical use cases that have non-planar and/or multi-projection display surfaces with various scattering characteristics because the surface often causes defocus and subsurface scattering. To address this issue, we propose ProDebNet, an end-to-end real-time projection deblurring network that synthesizes a projection image to minimize projection blur. The proposed method generates a projection image without explicitly estimating any geometry or scattering characteristics of the projection screen, which makes real-time processing possible. In addition, ProDebNet does not require real captured images for training data; we design a "pseudo-projected" synthetic dataset that is well-generalized to real-world blur data. Experimental results demonstrate that the proposed ProDebNet compensates for two dominant types of projection blur, i.e., defocus blur and subsurface blur, significantly faster than the baseline method, even in a real-projection scene. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:20391 / 20403
页数:13
相关论文
共 50 条
  • [1] Online Projector Deblurring Using a Convolutional Neural Network
    Kageyama, Yuta
    Iwai, Daisuke
    Sato, Kosuke
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (05) : 2223 - 2233
  • [2] JOINT DEMOSAICKING AND BLIND DEBLURRING USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Chi, Zhixiang
    Shu, Xiao
    Wu, Xiaolin
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2169 - 2173
  • [3] Blind Motion Deblurring for Satellite Image using Convolutional Neural Network
    Kim, Hyun-Ho
    Seo, Doochun
    Jung, Jaeheon
    Cha, Donghwan
    Lee, Donghan
    [J]. 2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2019, : 330 - 337
  • [4] Deblurring microscopic image by integrated convolutional neural network
    Wang, Yanqi
    Xu, Zheng
    Yang, Yifan
    Wang, Xiaodong
    He, Jiaheng
    Ren, Tongqun
    Liu, Junshan
    [J]. PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2023, 82 : 44 - 51
  • [5] Multi-Attention Convolutional Neural Network for Video Deblurring
    Zhang, Xiaoqin
    Wang, Tao
    Jiang, Runhua
    Zhao, Li
    Xu, Yuewang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 1986 - 1997
  • [6] UPDCNN: A NEW SCHEME FOR IMAGE UPSAMPLING AND DEBLURRING USING A DEEP CONVOLUTIONAL NEURAL NETWORK
    Esmaeilzehi, Alireza
    Ahmad, M. Omair
    Swamy, M. N. S.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2154 - 2158
  • [7] Deblurring high-energy industrial tomographic projections using a convolutional neural network
    Maulin, Maëva
    Estre, Nicolas
    Tisseur, David
    Kessedjian, Grégoire
    Sardet, Alix
    Payan, Emmanuel
    Eck, Daniel
    [J]. e-Journal of Nondestructive Testing, 2023, 28 (09):
  • [8] A Deep Convolutional Deblurring and Detection Neural Network for Localizing Text in Videos
    Wang, Yang
    Qian, Ye
    Shi, Jiahao
    Su, Feng
    [J]. MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 : 112 - 124
  • [9] Quick response barcode deblurring via doubly convolutional neural network
    Haitao Pu
    Mingqu Fan
    Jinliang Yang
    Jian Lian
    [J]. Multimedia Tools and Applications, 2019, 78 : 897 - 912
  • [10] A Convolutional Neural Network based Two-stage Document Deblurring
    Jiao, Jile
    Sun, Jun
    Satoshi, Naoi
    [J]. 2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 703 - 707