Sperner property, matroids and finite-dimensional Gorenstein algebras

被引:8
|
作者
Maeno, Toshiaki [1 ]
Numata, Yasuhide [2 ,3 ]
机构
[1] Kyoto Univ, Dept Elect Engn, Kyoto 6068501, Japan
[2] Univ Tokyo, Dept Math Informat, Bunkyo Ku, Tokyo 1138656, Japan
[3] Japan Sci & Technol Agcy JST, CREST, Tokyo, Japan
来源
关键词
MATRICES;
D O I
10.1090/conm/580/11496
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a combinatorial property of the vector space lattice and some polynomials associated to matroids. Stanley developed powerful methods based on Hard Lefschetz Theorem to handle combinatorial objects. It is known that proofs of the Sperner property of typical posets can be done by showing the Lefschetz property for related Artinian commutative graded algebras. We introduce certain finite-dimensional Gorenstein algebras associated to matroids to show the Sperner property for a class of ranked posets including vector space lattices. We also discuss the Grobner fans of the defining ideal of our Gorenstein algebras and some tropical hypersurfaces. https://books.google.co.in/books?hl=en&lr=&id=AZgCAQAAQBAJ&oi=fnd&pg=PA73&dq=Sperner+property,+matroids+and+finite-dimensional+Gorenstein+algebras&ots=FGpcbOXIkf&sig=b8Ba1p7u1aXAl9RxyjAkPEuyMuE#v=onepage&q=Sperner%20property%2C%20matroids%20and%20finite-dimensional%20Gorenstein%20algebras&f=false
引用
收藏
页码:73 / +
页数:3
相关论文
共 50 条