Sound source localization by Ormia ochracea inspired low-noise piezoelectric MEMS directional microphone

被引:27
|
作者
Rahaman, Ashiqur [1 ]
Kim, Byungki [1 ]
机构
[1] Korea Univ Technol & Educ, Sch Mechatron Engn, Cheonan 31253, South Korea
基金
新加坡国家研究基金会;
关键词
HEARING; SENSOR; EARS;
D O I
10.1038/s41598-020-66489-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The single-tone sound source localization (SSL) by majority of fly Ormia ochracea's ears-inspired directional microphones leaves a limited choice when an application like hearing aid (HA) demands broadband SSL. Here, a piezoelectric MEMS directional microphone using a modified mechanical model of fly's ear has been presented with primary focus to achieve SSL in most sensitive audio bands to mitigate the constraints of traditional SSL works. In the modified model, two optimized rectangular diaphragms have been pivoted by four optimized torsional beams; while the backside of the whole structure has been etched. As a result, the SSL relative to angular rotation of the incoming sound depicts the cosine dependency as an ideal pressure-gradient sensor. At the same time, the mechanical coupling leads the magnitude difference between two diaphragms which has been accounted as SSL in frequency domain. The idea behind this work has been analytical simulated first, and with the convincing mechanical results, the designed bio-inspired directional microphone (BDM) has been fabricated using commercially available MEMSCAP based on PiezoMUMPS processes. In an anechoic chamber, the fabricated device has been excited in free-field sound, and the SSL at 1 kHz frequency, rocking frequency, bending frequency, and in-between rocking and bending frequencies has been found in full compliance with the given angle of incidence of sound. With the measured inter-aural sensitivity difference (mISD) and directionality, the developed BDM has been demonstrated as a practical SSL device, and the results have been found in a perfect match with the given angle of incidence of sound. Furthermore, to facilitate the SSL in noisy environment, the noise has been optimized in all scopes, like the geometry of the diaphragm, supportive torsional beam, and sensing. As a result, the A-weighted noise of this work has been found less than 23 dBA across the audio bands, and the equivalent-input noise (EIN) has been found to be 25.52 dB SPL at 1 kHz frequency which are the lowest ever reported by a similar device. With the developed SSL in broadband-in addition to the lowest noise-the developed device can be extended in some audio applications like an HA device.
引用
收藏
页数:10
相关论文
共 42 条
  • [1] Sound source localization by Ormia ochracea inspired low–noise piezoelectric MEMS directional microphone
    Ashiqur Rahaman
    Byungki Kim
    [J]. Scientific Reports, 10
  • [2] Real-Time Sound Source Localization in Robots Using Fly Ormia Ochracea Inspired MEMS Directional Microphone
    Ishfaque, Asif
    Kim, Byungki
    [J]. IEEE SENSORS LETTERS, 2023, 7 (01)
  • [3] Influence of Microphone Housing on the Directional Response of Piezoelectric MEMS Microphones Inspired by Ormia Ochracea
    Bauer, Ralf
    Zhang, Yansheng
    Jackson, Joseph C.
    Whitmer, William M.
    Brimijoin, W. Owen
    Akeroyd, Michael A.
    Uttamchandani, Deepak
    Windmill, James F. C.
    [J]. IEEE SENSORS JOURNAL, 2017, 17 (17) : 5529 - 5536
  • [4] Fly Ormia Ochracea Inspired MEMS Directional Microphone: A Review
    Ishfaque, Asif
    Kim, Byungki
    [J]. IEEE SENSORS JOURNAL, 2018, 18 (05) : 1778 - 1789
  • [5] A low-noise differential microphone inspired by the ears of the parasitoid fly Ormia ochracea
    Miles, R. N.
    Su, Q.
    Cui, W.
    Shetye, M.
    Degertekin, F. L.
    Bicen, B.
    Garcia, C.
    Jones, S.
    Hall, N.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2009, 125 (04): : 2013 - 2026
  • [6] Sound source localization inspired by the ears of the Ormia ochracea
    Kuntzman, Michael L.
    Hall, Neal A.
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (03)
  • [7] MULTI-BAND ASYMMETRIC PIEZOELECTRIC MEMS MICROPHONE INSPIRED BY THE ORMIA OCHRACEA
    Zhang, Yansheng
    Bauer, Ralf
    Windmill, James F. C.
    Uttamchandani, Deepak
    [J]. 2016 IEEE 29TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2016, : 1114 - 1117
  • [8] Optical sensing in a directional MEMS microphone inspired by the ears of the parasitoid fly, Ormia ochracea
    Cui, WL
    Bicen, B
    Hall, N
    Jones, SA
    Degertekin, FL
    Miles, RN
    [J]. MEMS 2006: 19TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2006, : 614 - 617
  • [9] Design and characterizations of a multi–sound receiver using fly Ormia ochracea's ears–inspired MEMS directional microphone array
    Rahaman, Ashiqur
    Kim, Byungki
    Park, Dongkyou
    [J]. Applied Acoustics, 2025, 228
  • [10] Ormia ochracea Inspired Single-Microphone Approach for 3-D Sound Localization
    Waqar, Arbaz
    Khan, Amjad
    Kim, Byungki
    Park, Dongkyou
    [J]. IEEE SENSORS LETTERS, 2024, 8 (08)