SEMI-LOCAL TOTAL VARIATION FOR REGULARIZATION OF INVERSE PROBLEMS

被引:0
|
作者
Condat, Laurent [1 ]
机构
[1] Univ Grenoble Alpes, Dept Images & Signals, GIPSA Lab, Grenoble, France
关键词
total variation; non-local regularization; inverse problem; convex optimization; proximal method;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose the discrete semi-local total variation (SLTV) as a new regularization functional for inverse problems in imaging. The SLTV favors piecewise linear images; so the main drawback of the total variation (TV), its clustering effect, is avoided. Recently proposed primal-dual methods allow to solve the corresponding optimization problems as easily and efficiently as with the classical TV.
引用
收藏
页码:1806 / 1810
页数:5
相关论文
共 50 条
  • [1] Semi-Local Scaling Exponent Estimation With Box-Penalty Constraints and Total-Variation Regularization
    Nelson, J. D. B.
    Nafornita, C.
    Isar, A.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) : 3167 - 3181
  • [2] Regularization of linear inverse problems with total generalized variation
    Bredies, Kristian
    Holler, Martin
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2014, 22 (06): : 871 - 913
  • [3] Parametric derivatives in inverse conductivity problems with total variation regularization
    Wade, J. Gordon
    Senior, Kenneth
    Seubert, Steven
    [J]. INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2022, 69 (03) : 431 - 442
  • [4] Total Deep Variation: A Stable Regularization Method for Inverse Problems
    Kobler, Erich
    Effland, Alexander
    Kunisch, Karl
    Pock, Thomas
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9163 - 9180
  • [5] Inverse Potential Problems for Divergence of Measures with Total Variation Regularization
    L. Baratchart
    C. Villalobos Guillén
    D. P. Hardin
    M. C. Northington
    E. B. Saff
    [J]. Foundations of Computational Mathematics, 2020, 20 : 1273 - 1307
  • [6] Inverse Potential Problems for Divergence of Measures with Total Variation Regularization
    Baratchart, L.
    Guillen, C. Villalobos
    Hardin, D. P.
    Northington, M. C.
    Saff, E. B.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2020, 20 (05) : 1273 - 1307
  • [7] A function space framework for structural total variation regularization with applications in inverse problems
    Hintermuller, Michael
    Holler, Martin
    Papafitsoros, Kostas
    [J]. INVERSE PROBLEMS, 2018, 34 (06)
  • [8] Runge-Kutta type total variation regularization for nonlinear inverse problems
    Li, Li
    Liu, Wanyu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 103 - 114
  • [9] Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients
    Chan, TF
    Tai, XC
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 193 (01) : 40 - 66
  • [10] SEMI-LOCAL DUALITY AND FESR PROBLEMS FOR VENEZIANO MODELS
    ACHTERBE.MC
    SELVA, AD
    MASPERI, L
    PAGE, R
    [J]. LETTERE AL NUOVO CIMENTO, 1973, 6 (06): : 211 - 214