Zero-Shot Learning posed as a Missing Data Problem

被引:17
|
作者
Zhao, Bo [1 ,2 ]
Wu, Botong [1 ,2 ]
Wu, Tianfu [3 ]
Wang, Yizhou [1 ,2 ]
机构
[1] Cooperat Medianet Innovat Ctr, MoE, Key Lab Machine Percept, Natl Engn Lab Video Technol, Shanghai, Peoples R China
[2] Peking Univ, Sch EECS, Beijing 100871, Peoples R China
[3] North Carolina State Univ, Dept ECE & Visual Narrat Cluster, Raleigh, NC USA
关键词
D O I
10.1109/ICCVW.2017.310
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method of zero-shot learning (ZSL) which poses ZSL as the missing data problem, rather than the missing label problem. Specifically, most existing ZSL methods focus on learning mapping functions from the image feature space to the label embedding space. Whereas, the proposed method explores a simple yet effective transductive framework in the reverse way - our method estimates data distribution of unseen classes in the image feature space by transferring knowledge from the label embedding space. Following the transductive setting, we leverage unlabeled data to refine the initial estimation. In experiments, our method achieves the highest classification accuracies on two popular datasets, namely, 96.00% on AwA and 60.24% on CUB.
引用
收藏
页码:2616 / 2622
页数:7
相关论文
共 50 条
  • [1] Zero-Shot Learning with Missing Attributes using Semantic Correlations
    Braytee, Ali
    Naji, Mohamad
    Anaissi, Ali
    Chaturvedi, Kunal
    Prasad, Mukesh
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [2] Generalized Zero-Shot Learning with Noisy Labeled Data
    Xu, Liqing
    Liu, Xueliang
    Jiang, Yishun
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XI, 2024, 14435 : 289 - 300
  • [3] Data-Free Generalized Zero-Shot Learning
    Tang, Bowen
    Zhang, Jing
    Yan, Long
    Yu, Qian
    Sheng, Lu
    Xu, Dong
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 6, 2024, : 5108 - 5117
  • [4] Ordinal Zero-Shot Learning
    Huo, Zengwei
    Geng, Xin
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1916 - 1922
  • [5] Zero-shot causal learning
    Nilforoshan, Hamed
    Moor, Michael
    Roohani, Yusuf
    Chen, Yining
    Surina, Anja
    Yasunaga, Michihiro
    Oblak, Sara
    Leskovec, Jure
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Zero-Shot Kernel Learning
    Zhang, Hongguang
    Koniusz, Piotr
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7670 - 7679
  • [7] Rebalanced Zero-Shot Learning
    Ye, Zihan
    Yang, Guanyu
    Jin, Xiaobo
    Liu, Youfa
    Huang, Kaizhu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4185 - 4198
  • [8] Incremental Zero-Shot Learning
    Wei, Kun
    Deng, Cheng
    Yang, Xu
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13788 - 13799
  • [9] Zero-shot Metric Learning
    Xu, Xinyi
    Cao, Huanhuan
    Yang, Yanhua
    Yang, Erkun
    Deng, Cheng
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3996 - 4002
  • [10] Active Zero-Shot Learning
    Xie, Sihong
    Wang, Shaoxiong
    Yu, Philip S.
    [J]. CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1889 - 1892