Angular Momentum of Phonons and the Einstein-de Haas Effect

被引:204
|
作者
Zhang, Lifa [1 ]
Niu, Qian [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[2] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
关键词
MAGNETIC-FIELD; SPIN; SOLIDS;
D O I
10.1103/PhysRevLett.112.085503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the angular momentum of phonons in a magnetic crystal. In the presence of a spin-phonon interaction, we obtain a nonzero angular momentum of phonons, which is an odd function of magnetization. At zero temperature, a phonon has a zero-point angular momentum in addition to a zero-point energy. With increasing temperature, the total phonon angular momentum diminishes and approaches zero in the classical limit. The nonzero phonon angular momentum can have a significant impact on the Einstein-de Haas effect. To obtain the change of angular momentum of electrons, the change of the phonon angular momentum needs to be subtracted from the opposite change of the lattice angular momentum. Furthermore, the finding of the phonon angular momentum gives a potential method to study the spin-phonon interaction. Possible experiments on phonon angular momentum are also discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Quantum Einstein-de Haas effect
    Marc Ganzhorn
    Svetlana Klyatskaya
    Mario Ruben
    Wolfgang Wernsdorfer
    Nature Communications, 7
  • [2] Quantum Einstein-de Haas effect
    Ganzhorn, Marc
    Klyatskaya, Svetlana
    Ruben, Mario
    Wernsdorfer, Wolfgang
    NATURE COMMUNICATIONS, 2016, 7
  • [3] The microscopic Einstein-de Haas effect
    Wells, T.
    Horsfield, A. P.
    Foulkes, W. M. C.
    Dudarev, S. L.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (22):
  • [4] The ultrafast Einstein-de Haas effect
    Dornes, C.
    Acremann, Y.
    Savoini, M.
    Kubli, M.
    Neugebauer, M. J.
    Abreu, E.
    Huber, L.
    Lantz, G.
    Vaz, C. A. F.
    Lemke, H.
    Bothschafter, E. M.
    Porer, M.
    Esposito, V.
    Rettig, L.
    Buzzi, M.
    Alberca, A.
    Windsor, Y. W.
    Beaud, P.
    Staub, U.
    Zhu, Diling
    Song, Sanghoon
    Glownia, J. M.
    Johnson, S. L.
    NATURE, 2019, 565 (7738) : 209 - +
  • [5] Einstein-de Haas effect of topological magnons
    Li, Jun
    Datta, Trinanjan
    Yao, Dao-Xin
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [6] On a chiral analog of the Einstein-de Haas effect
    V. I. Zakharov
    Journal of Experimental and Theoretical Physics, 2015, 120 : 428 - 435
  • [7] On a chiral analog of the Einstein-de Haas effect
    Zakharov, V. I.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2015, 120 (03) : 428 - 435
  • [8] Einstein-de Haas Nanorotor
    Izumida, W.
    Okuyama, R.
    Sato, K.
    Kato, T.
    Matsuo, M.
    PHYSICAL REVIEW LETTERS, 2022, 128 (01)
  • [9] Resonant Einstein-de Haas effect in a rubidium condensate
    Gawryluk, Krzysztof
    Brewczyk, Miroslaw
    Bongs, Kai
    Gajda, Mariusz
    PHYSICAL REVIEW LETTERS, 2007, 99 (13)
  • [10] Einstein-de Haas effect in dipolar Bose-Einstein condensates
    Kawaguchi, Y
    Saito, H
    Ueda, M
    PHYSICAL REVIEW LETTERS, 2006, 96 (08)