DISCRETE ELEMENT STUDIES OF GRAVITY-DRIVEN DENSE GRANULAR FLOWS IN VERTICAL CYLINDRICAL TUBES

被引:0
|
作者
Chilamkurti, Yesaswi N. [1 ]
Gould, Richard D. [1 ]
机构
[1] North Carolina State Univ, Raleigh, NC 27695 USA
关键词
PARTICLE IMAGE VELOCIMETRY; HEAT-TRANSFER; FLUID; RECEIVER;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The current paper focusses on the characterization of gravity-driven dry granular flows in cylindrical tubes. With a motive of using dense particulate media as heat transfer fluids (HTF), the main focus was to address the characteristics of flow regimes with a packing fraction of similar to 60%. In a previous work [1], experimental and computational studies were conducted to understand the effects of different geometrical parameters on the flow physics. The current paper is an extension of that work to gain more insights into the granular flow physics. The- three-dimensional computer simulations were conducted by implementing the Discrete Element Method (DEM) for the Lagrangian modelling of particles. Hertz-Mindilin models were used for the soft-particle formulations of inter-particulate contacts. Simulations were conducted to examine the particulate velocities and flow rates to understand the rheology in the dense flow regime. Past studies suggested the existence of a Gaussian mean velocity profile for dense gravity-driven granular flows. These observations were further analyzed by studying the influence of geometrical parameters on the same. The current work thus focusses on studying the rheology of dense granular flows and obtaining a better understanding of the velocity profiles, the wall friction characteristics, and the particle-wall contact behavior.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Gravity-driven dense granular flows
    Ertas, D
    Grest, GS
    Halsey, TC
    Levine, D
    Silbert, LE
    [J]. EUROPHYSICS LETTERS, 2001, 56 (02): : 214 - 220
  • [2] EXPERIMENTAL AND COMPUTATIONAL STUDIES OF GRAVITY-DRIVEN DENSE GRANULAR FLOWS
    Chilamkurti, Yesaswi N.
    Gould, Richard D.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 7A, 2016,
  • [3] Diffusion and mixing in gravity-driven dense granular flows
    Choi, J
    Kudrolli, A
    Rosales, RR
    Bazant, MZ
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (17) : 174301 - 1
  • [4] CHARACTERIZING PARTICLE-WALL CONTACT BEHAVIOR AND FLUCTUATIONS IN GRAVITY-DRIVEN DENSE GRANULAR FLOWS IN CYLINDRICAL TUBES USING DEM
    Chilamkurti, Yesaswi N.
    Gould, Richard D.
    [J]. PROCEEDINGS OF THE ASME POWER CONFERENCE JOINT WITH ICOPE-17, 2017, VOL 2, 2017,
  • [5] Numerical study of gravity-driven dense granular flows on flow behavior characterization
    Li, Yu
    Gui, Nan
    Yang, Xingtuan
    Tu, Jiyuan
    Jiang, Shengyao
    [J]. POWDER TECHNOLOGY, 2016, 297 : 144 - 152
  • [6] Cellular automata model of gravity-driven granular flows
    Keirnan R. LaMarche
    Stephen L. Conway
    Benjamin J. Glasser
    Troy Shinbrot
    [J]. Granular Matter, 2007, 9 : 219 - 229
  • [7] Cellular automata model of gravity-driven granular flows
    LaMarche, Keirnan R.
    Conway, Stephen L.
    Glasser, Benjamin J.
    Shinbrot, Troy
    [J]. GRANULAR MATTER, 2007, 9 (3-4) : 219 - 229
  • [8] Growing length scale in gravity-driven dense granular flow
    Tewari, Shubha
    Tithi, Bidita
    Ferguson, Allison
    Chakraborty, Bulbul
    [J]. PHYSICAL REVIEW E, 2009, 79 (01):
  • [9] Velocity correlations in dense gravity-driven granular chute flow
    Baran, Oleh
    Ertas, Deniz
    Halsey, Thomas C.
    Grest, Gary S.
    Lechman, Jeremy B.
    [J]. PHYSICAL REVIEW E, 2006, 74 (05):
  • [10] Electrical capacitance tomography measurements of gravity-driven granular flows
    Hua, JS
    Wang, CH
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (03) : 621 - 630