Growth rates of dry thermal oxidation of 4H-silicon carbide

被引:33
|
作者
Simonka, V. [1 ]
Hossinger, A. [2 ]
Weinbub, J. [1 ]
Selberherr, S. [3 ]
机构
[1] TU Wien, Inst Microelect, Christian Doppler Lab High Performance TCAD, Gusshausstr 27-29-E360, A-1040 Vienna, Austria
[2] Silvaco Europe Ltd, Cambridge PE27 5JL, England
[3] TU Wien, Inst Microelect, Gusshausstr 27-29-E360, A-1040 Vienna, Austria
关键词
RATE ENHANCEMENT; SILICON-CARBIDE; THIN REGIME; OXYGEN; SIO2; RELIABILITY; ORIENTATION; INSULATOR; MODEL; O-2;
D O I
10.1063/1.4964688
中图分类号
O59 [应用物理学];
学科分类号
摘要
We provide a full set of growth rate coefficients to enable high-accuracy two-and three-dimensional simulations of dry thermal oxidation of 4H-silicon carbide. The available models are insufficient for the simulation of complex multi-dimensional structures, as they are unable to predict oxidation for arbitrary crystal directions because of the insufficient growth rate coefficients. By investigating time-dependent dry thermal oxidation kinetics, we obtain temperature-dependent growth rate coefficients for surfaces with different crystal orientations. We fit experimental data using an empirical relation to obtain the oxidation growth rate parameters. Time-dependent oxide thicknesses at various temperatures are taken from published experimental findings. We discuss the oxidation rate parameters in terms of surface orientation and oxidation temperature. Additionally, we fit the obtained temperature-dependent growth rate coefficients using the Arrhenius equation to obtain activation energies and pre-exponential factors for the four crystal orientations. The thereby obtained parameters are essential for enabling high-accuracy simulations of dry thermal oxidation and can be directly used to augment multi-dimensional process simulations. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Thermal oxidation of 4H-silicon carbide using the afterglow method
    Hoff, AM
    Oborina, E
    Saddow, SE
    Savtchouk, A
    [J]. SILICON CARBIDE AND RELATED MATERIALS 2003, PRTS 1 AND 2, 2004, 457-460 : 1349 - 1352
  • [2] Thermal effects on the dynamics of 4H-silicon carbide MOSFETs
    Vichare, M
    Kazimierczuk, M
    Ramalingam, ML
    Tolkinnen, L
    Reinhardt, K
    Marciniak, MM
    [J]. IECEC 96 - PROCEEDINGS OF THE 31ST INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, VOLS 1-4, 1996, : 540 - 545
  • [4] Phosphorus implantation into 4H-silicon carbide
    M. A. Capano
    R. Santhakumar
    R. Venugopal
    M. R. Melloch
    J. A. Cooper
    [J]. Journal of Electronic Materials, 2000, 29 : 210 - 214
  • [5] Phosphorus implantation into 4H-silicon carbide
    Capano, MA
    Santhakumar, R
    Venugopal, R
    Melloch, MR
    Cooper, JA
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2000, 29 (02) : 210 - 214
  • [6] NITROGEN DONORS IN 4H-SILICON CARBIDE
    GOTZ, W
    SCHONER, A
    PENSL, G
    SUTTROP, W
    CHOYKE, WJ
    STEIN, R
    LEIBENZEDER, S
    [J]. JOURNAL OF APPLIED PHYSICS, 1993, 73 (07) : 3332 - 3338
  • [7] Current conduction mechanisms in thermal nitride and dry gate oxide grown on 4H-silicon carbide (SiC)
    Liu, Li
    Yang, Yin-Tang
    [J]. JOURNAL OF ADVANCED OXIDATION TECHNOLOGIES, 2017, 20 (01)
  • [8] 4H-silicon carbide power switching devices
    Palmour, JW
    Allen, ST
    Singh, R
    Lipkin, LA
    Waltz, DG
    [J]. SILICON CARBIDE AND RELATED MATERIALS 1995, 1996, 142 : 813 - 816
  • [9] Study of spiral growth on 4H-silicon carbide on-axis substrates
    Masumoto, Keiko
    Kojima, Kazutoshi
    Okumura, Hajime
    [J]. JOURNAL OF CRYSTAL GROWTH, 2017, 475 : 251 - 255
  • [10] 4H-Silicon Carbide as an Acoustic Material for MEMS
    Long, Yaoyao
    Liu, Zhenming
    Ayazi, Farrokh
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2023, 70 (10) : 1189 - 1200