Four lectures on KAM for the non-linear Schrodinger equation

被引:3
|
作者
Eliasson, L. H. [1 ]
Kuksin, S. B. [2 ]
机构
[1] Univ Paris 07, Dept Math, Paris, France
[2] Heriot Watt Univ, Dept Math, Edinburgh, Midlothian, Scotland
关键词
D O I
10.1007/978-1-4020-6964-2_10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the KAM-theory for lower-dimensional ton for the non-linear Schrodinger equation with periodic boundary conditions and a convolution potential in dimension d. Central in this theory is the homological equation and a condition on the small divisors often known as the second Melnikov condition. The difficulties related to this condition are substantial when d >= 2. We discuss this difficulty, and we show that a block decomposition and a Toplitz-Lipschitz-property, present for non-linear Schrodinger equation, permit to overcome this difficuly. A detailed proof is given in [EK06].
引用
收藏
页码:179 / +
页数:2
相关论文
共 50 条
  • [1] A KAM algorithm for the resonant non-linear Schrodinger equation
    Procesi, C.
    Procesi, M.
    ADVANCES IN MATHEMATICS, 2015, 272 : 399 - 470
  • [2] KAM for the Non-Linear Schrodinger Equation - A Short Presentation
    Eliasson, Hakan L.
    Kuksin, Sergei B.
    HOLOMORPHIC DYNAMICS AND RENORMALIZATION:: A VOLUME IN HONOUR OF JOHN MILNOR'S 75TH BIRTHDAY, 2008, 53 : 361 - +
  • [3] INVARIANTS OF THE NON-LINEAR SCHRODINGER EQUATION
    JOHNSON, SF
    LONNGREN, KE
    NICHOLSON, DR
    PHYSICS LETTERS A, 1979, 74 (06) : 393 - 394
  • [4] NON-LINEAR SCHRODINGER-EQUATION, POTENTIAL NON-LINEAR SCHRODINGER-EQUATION AND SOLITON-SOLUTIONS
    BOITI, M
    LADDOMADA, C
    PEMPINELLI, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1982, 68 (03): : 236 - 248
  • [5] NON-LINEAR SCHRODINGER EQUATION WITH NON LOCAL INTERACTION
    GINIBRE, J
    VELO, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (14): : 683 - 685
  • [6] The non-linear Schrodinger equation with a periodic δ-interaction
    Pava, Jaime Angulo
    Ponce, Gustavo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (03): : 497 - 551
  • [7] On the variational principle for the non-linear Schrodinger equation
    Mihalka, Zsuzsanna E.
    Margocsy, Adam
    Szabados, Agnes
    Surjan, Peter R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (01) : 340 - 351
  • [8] The energy graph of the non-linear Schrodinger equation
    Procesi, M.
    Procesi, C.
    Nguyen, B. Van
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (02) : 229 - 301
  • [9] Instability for the semiclassical non-linear Schrodinger equation
    Burq, N
    Zworski, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (01) : 45 - 58
  • [10] Analytical and numerical aspects of the linear and non-linear Schrodinger equation
    Negulescu, Claudia
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2019, 10 (02): : 351 - 446