Evaluating Manifest Monotonicity Using Bayes Factors

被引:8
|
作者
Tijmstra, Jesper [1 ]
Hoijtink, Herbert [2 ]
Sijtsma, Klaas [3 ]
机构
[1] Tilburg Univ, CITO, Natl Inst Educ Measurement, NL-5000 LE Tilburg, Netherlands
[2] Univ Utrecht, CITO, Natl Inst Educ Measurement, NL-3508 TC Utrecht, Netherlands
[3] Tilburg Univ, NL-5000 LE Tilburg, Netherlands
关键词
Bayes factor; essential monotonicity; item response theory; latent monotonicity; manifest monotonicity; LATENT TRAIT; SUM SCORE; IRT;
D O I
10.1007/s11336-015-9475-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The assumption of latent monotonicity in item response theory models for dichotomous data cannot be evaluated directly, but observable consequences such as manifest monotonicity facilitate the assessment of latent monotonicity in real data. Standard methods for evaluating manifest monotonicity typically produce a test statistic that is geared toward falsification, which can only provide indirect support in favor of manifest monotonicity. We propose the use of Bayes factors to quantify the degree of support available in the data in favor of manifest monotonicity or against manifest monotonicity. Through the use of informative hypotheses, this procedure can also be used to determine the support for manifest monotonicity over substantively or statistically relevant alternatives to manifest monotonicity, rendering the procedure highly flexible. The performance of the procedure is evaluated using a simulation study, and the application of the procedure is illustrated using empirical data.
引用
收藏
页码:880 / 896
页数:17
相关论文
共 50 条
  • [1] Evaluating Manifest Monotonicity Using Bayes Factors
    Jesper Tijmstra
    Herbert Hoijtink
    Klaas Sijtsma
    [J]. Psychometrika, 2015, 80 : 880 - 896
  • [2] Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models
    Jesper Tijmstra
    Maria Bolsinova
    [J]. Psychometrika, 2019, 84 : 846 - 869
  • [3] Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models
    Tijmstra, Jesper
    Bolsinova, Maria
    [J]. PSYCHOMETRIKA, 2019, 84 (03) : 846 - 869
  • [4] Evaluating Predictors' Relative Importance Using Bayes Factors in Regression Models
    Gu, Xin
    [J]. PSYCHOLOGICAL METHODS, 2023, 28 (04) : 825 - 842
  • [5] MONOTONICITY OF BAYES SEQUENTIAL TESTS
    BROWN, LD
    COHEN, A
    STRAWDERMAN, WE
    [J]. ANNALS OF STATISTICS, 1979, 7 (06): : 1222 - 1230
  • [6] Testing Manifest Monotonicity Using Order-Constrained Statistical Inference
    Jesper Tijmstra
    David J. Hessen
    Peter G. M. van der Heijden
    Klaas Sijtsma
    [J]. Psychometrika, 2013, 78 : 83 - 97
  • [7] Testing Manifest Monotonicity Using Order-Constrained Statistical Inference
    Tijmstra, Jesper
    Hessen, David J.
    van der Heijden, Peter G. M.
    Sijtsma, Klaas
    [J]. PSYCHOMETRIKA, 2013, 78 (01) : 83 - 97
  • [8] Latent and manifest monotonicity in item response models
    Junker, BW
    Sijtsma, K
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2000, 24 (01) : 63 - 79
  • [9] Conditional Bayes reconstruction for ERT data using resistance monotonicity information
    Aykroyd, Robert G.
    Soleimani, Manuchehr
    Lionheart, William R. B.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (09) : 2405 - 2413
  • [10] The author responds to "Evaluating p Values and Bayes Factors"
    Ioannidis, John P. A.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 168 (04) : 389 - 390