The trends of decrease in size and increase in power dissipation for micro-electronic systems present a significant challenge for thermal management of modern electronics. The preferable cooling solution could be micro heat exchangers based on forced flow boiling. Nanoparticle deposition can affect nucleate boiling heat transfer coefficient via alteration of surface thermal conductivity, roughness, capillary wicking, wettability, and nucleation site density. It can also affect heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. In this study, flow boiling was investigated for 0.001 vol% aluminum oxide nanofluids in a brass microchannel and compared to results for regular water. For the case of nanofluid flow boiling, high speed images were taken after boiling durations of 25, 75, 125, and 150 min. Bubble growth rates were measured and compared for each case. Flow regime oscillation was observed and regime duration was split into two periods: single-phase liquid and two-phase. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). The addition of nanoparticles was shown to stabilize bubble growth as well as the transition of flow regimes between liquid, two-phase, and vapor.