The deconfinement phase transition in Yang-Mills theory with general Lie group G

被引:18
|
作者
Holland, K [1 ]
Pepe, M
Wiese, UJ
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Bern, Inst Theoret Phys, CH-3012 Bern, Switzerland
关键词
D O I
10.1016/j.nuclphysbps.2003.12.266
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present numerical results for the deconfinement phase transition in Sp(2) and Sp(3) Yang-Mills theories in (2 + 1)-D and (3 + 1)-D. We then make a conjecture on the order of this phase transition in Yang-Mills theories with general Lie groups G = SU(N), SO(N), Sp(N) and with exceptional groups G = G(2), F(4), E(6), E(7), E(8).
引用
收藏
页码:712 / 714
页数:3
相关论文
共 50 条
  • [1] Deconfinement in Yang-Mills:: a conjecture for a general gauge Lie group G
    Pepe, M
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 141 : 238 - 243
  • [2] Yang-Mills correlators across the deconfinement phase transition
    Reinosa, U.
    Serreau, J.
    Tissier, M.
    Tresmontant, A.
    [J]. PHYSICAL REVIEW D, 2017, 95 (04):
  • [3] Deconfinement phase transition in the Hamiltonian approach to Yang-Mills theory in Coulomb gauge
    Reinhardt, H.
    Campagnari, D.
    Heffner, J.
    [J]. 2ND INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS, 2014, 71
  • [4] Deconfinement phase transition in the Hamiltonian approach to Yang-Mills theory in Coulomb gauge
    Heffner, Jan
    Reinhardt, Hugo
    Campagnari, Davide R.
    [J]. PHYSICAL REVIEW D, 2012, 85 (12):
  • [5] THE ORDER OF THE DECONFINEMENT TRANSITION IN SU(3) YANG-MILLS THEORY
    CELIK, T
    ENGELS, J
    SATZ, H
    [J]. PHYSICS LETTERS B, 1983, 125 (05) : 411 - 414
  • [6] Topological susceptibility through the deconfinement phase transition in SU(3) Yang-Mills theory
    Alles, B
    DElia, M
    DiGiacomo, A
    [J]. NUCLEAR PHYSICS B, 1997, : 348 - 352
  • [7] Continuity, deconfinement, and (super) Yang-Mills theory
    Erich Poppitz
    Thomas Schäfer
    Mithat Ünsal
    [J]. Journal of High Energy Physics, 2012
  • [8] Deconfinement transition and string tensions in SU(4) Yang-Mills theory
    Wingate, M
    Ohta, S
    [J]. PHYSICAL REVIEW D, 2001, 63 (09):
  • [9] Continuity, deconfinement, and (super) Yang-Mills theory
    Poppitz, Erich
    Schaefer, Thomas
    Uensal, Mithat
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (10):
  • [10] Deconfinement in SU(2) Yang-Mills theory as a center vortex percolation transition
    Engelhardt, M
    Langfeld, K
    Reinhardt, H
    Tennert, O
    [J]. PHYSICAL REVIEW D, 2000, 61 (05) : 1 - 10