The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018

被引:41
|
作者
Yong, Zhi Yuan [1 ]
Kim, Ki Yong [1 ]
Oh, Jeong-Eun [1 ]
机构
[1] Pusan Natl Univ, Dept Civil & Environm Engn, Busan 46241, South Korea
关键词
South Korea; Groundwater; PFAS; Regional distribution; Chemical accident impact; PERFLUOROALKYL ACIDS PFAAS; FLUOROCHEMICAL INDUSTRIAL PARK; SUSPENDED PARTICULATE MATTER; DRINKING-WATER; PERFLUORINATED COMPOUNDS; SURFACE; SEDIMENT; BEHAVIOR; SOILS; FATE;
D O I
10.1016/j.envpol.2020.115395
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Per- and polyfluoroalkyl substances (PFAS) concentrations of groundwater in three cities of the Nakdong River Basin in South Korea were quantified to investigate PFAS contamination and the effect of PFAS leakage incident that occurred in the study area in 2018. Groundwater PFASs concentration ranged from non-detectable (N.D.) to 36.9 ng/L (mean 14.1 ng/L), in which, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), and perfluorohexane sulfonate (PFHxS) were commonly observed. Compared to long-chain (C >= 8) PFAS, short-chain (<C8) PFAS are more commonly detected in groundwater. Statistical differences were found between the groundwater obtained from different land use. PFAS detected in groundwater from industrial land use were significant different (p<0.01) than other land usages. Spatial difference of PFAS concentrations and distributions in groundwater were also found. PFAS concentrations in groundwater at the furthest downstream area (mean 26.4 ng/L) were the highest followed by the middle reaches (mean 16.2 ng/L), and the upstream area (mean 4.3 ng/L). PFHxS, which was detected dominantly in the middle reach areas, contributed 51% of the total PFAS concentration, but was not detected in the upstream area. There was no health risk by drinking groundwater but found the effect of PFHxS leakage incident on groundwater. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review
    Zhang, Zhiming
    Sarkar, Dibyendu
    Biswas, Jayanta Kumar
    Datta, Rupali
    [J]. BIORESOURCE TECHNOLOGY, 2022, 344
  • [2] Per- and Polyfluoroalkyl Substances (PFAS) in Street Sweepings
    Ahmadireskety, Atiye
    Da Silva, Bianca F.
    Robey, Nicole M.
    Douglas, Thomas E.
    Aufmuth, Joe
    Solo-Gabriele, Helena M.
    Yost, Richard A.
    Townsend, Timothy G.
    Bowden, John A.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (10) : 6069 - 6077
  • [3] Epigenetic changes by per- and polyfluoroalkyl substances (PFAS)
    Kim, Sujin
    Thapar, Isha
    Brooks, Bryan W.
    [J]. ENVIRONMENTAL POLLUTION, 2021, 279
  • [4] Analyzing Per- and Polyfluoroalkyl Substances ( PFAS) in Foods
    Workman, Jerome, Jr.
    [J]. LCGC NORTH AMERICA, 2023, 41 (03) : 103 - 104
  • [5] Ecological Considerations of Per- and Polyfluoroalkyl Substances (PFAS)
    Chris McCarthy
    William Kappleman
    William DiGuiseppi
    [J]. Current Pollution Reports, 2017, 3 : 289 - 301
  • [6] Epigenetic changes by per- and polyfluoroalkyl substances (PFAS)
    Kim, Sujin
    Thapar, Isha
    Brooks, Bryan W.
    [J]. Brooks, Bryan W. (bryan_brooks@baylor.edu); Kim, Sujin (sujin_kim@baylor.edu), 1600, Elsevier Ltd (279):
  • [7] Ecological Considerations of Per- and Polyfluoroalkyl Substances (PFAS)
    McCarthy, Chris
    Kappleman, William
    DiGuiseppi, William
    [J]. CURRENT POLLUTION REPORTS, 2017, 3 (04): : 289 - 301
  • [8] An overview of the uses of per- and polyfluoroalkyl substances (PFAS)
    Gluege, Juliane
    Scheringer, Martin
    Cousins, Ian T.
    DeWitt, Jamie C.
    Goldenman, Gretta
    Herzke, Dorte
    Lohmann, Rainer
    Ng, Carla A.
    Trier, Xenia
    Wang, Zhanyun
    [J]. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2020, 22 (12) : 2345 - 2373
  • [9] Adsorption of per- and polyfluoroalkyl substances (PFAS) to containers
    Zenobio, Jenny E.
    Salawu, Omobayo A.
    Han, Ziwei
    Adeleye, Adeyemi S.
    [J]. JOURNAL OF HAZARDOUS MATERIALS ADVANCES, 2022, 7
  • [10] Efficient replacement for per- and polyfluoroalkyl substances (PFAS)
    Hänig, Jens-Paul
    Genz, Kerstin
    [J]. JOT, Journal fuer Oberflaechentechnik, 2024, 64 (Suppl 4): : 24 - 26