Damage mechanisms identification in FRP using acoustic emission and artificial neural networks

被引:4
|
作者
de Oliveira, R.
Marques, A. T.
机构
[1] Inst Mech Engn & Ind Management, P-4465591 Leca do Bailio, Portugal
[2] Univ Porto, Fac Engn, Dept Mech Engn & Ind Management, P-4200 Oporto, Portugal
来源
关键词
composite materials; health monitoring; acoustic emission; artificial neural networks;
D O I
10.4028/www.scientific.net/MSF.514-516.789
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study is proposed a procedure for damage discrimination based on acoustic emission signals clustering using artificial neural networks. An unsupervised methodology based on the self-organizing maps of Kohonen is developed considering the lack of a priori knowledge of the different signal classes. The methodology is described and applied to a cross-ply glass-fibre/polyester laminate submitted to a tensile test. In this case, six different AE waveforms were identified. The damage sequence could so be identified from the modal nature of those waves.
引用
收藏
页码:789 / 793
页数:5
相关论文
共 50 条
  • [1] Health monitoring of FRP using acoustic emission and artificial neural networks
    de Oliveira, R.
    Marques, A. T.
    [J]. COMPUTERS & STRUCTURES, 2008, 86 (3-5) : 367 - 373
  • [2] Identification of damage degree of concrete by acoustic emission and artificial neural network
    Wang, Yan
    Zhang, Youtao
    Hu, Hongxiang
    Liu, Shaojun
    Yuan, Liang
    [J]. Jianzhu Cailiao Xuebao/Journal of Building Materials, 2014, 17 (04): : 672 - 676
  • [3] Bridge Damage Identification Using Artificial Neural Networks
    Weinstein, Jordan C.
    Sanayei, Masoud
    Brenner, Brian R.
    [J]. JOURNAL OF BRIDGE ENGINEERING, 2018, 23 (11)
  • [4] Identification of Cracking Mechanisms in Scaled FRP Reinforced Concrete Beams using Acoustic Emission
    ElBatanouny, M. K.
    Larosche, A.
    Mazzoleni, P.
    Ziehl, P. H.
    Matta, F.
    Zappa, E.
    [J]. EXPERIMENTAL MECHANICS, 2014, 54 (01) : 69 - 82
  • [5] Identification of Cracking Mechanisms in Scaled FRP Reinforced Concrete Beams using Acoustic Emission
    M. K. ElBatanouny
    A. Larosche
    P. Mazzoleni
    P. H. Ziehl
    F. Matta
    E. Zappa
    [J]. Experimental Mechanics, 2014, 54 : 69 - 82
  • [6] Acoustic emission source localization by artificial neural networks
    Kalafat, Sinan
    Sause, Markus G. R.
    [J]. STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2015, 14 (06): : 633 - 647
  • [7] Identification of Structural Damage in a Vehicular Bridge using Artificial Neural Networks
    Gonzalez-Perez, C.
    Valdes-Gonzalez, J.
    [J]. STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2011, 10 (01): : 33 - 48
  • [8] Increasing Probability of Detecting Acoustic Emission Sources Using Artificial Neural Networks
    Yu. G. Matvienko
    I. E. Vasil’ev
    D. V. Chernov
    A. V. Kozhevnikov
    I. V. Mishchenko
    [J]. Russian Journal of Nondestructive Testing, 2022, 58 : 333 - 341
  • [9] Increasing Probability of Detecting Acoustic Emission Sources Using Artificial Neural Networks
    Matvienko, Yu G.
    Vasil'ev, I. E.
    Chernov, D., V
    Kozhevnikov, A., V
    Mishchenko, I., V
    [J]. RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2022, 58 (05) : 333 - 341
  • [10] Acoustic Emission: identification of the acoustic signature of damage mechanisms and lifetime prediction
    Godin, N.
    Deschanel, S.
    Courbon, J.
    [J]. MATERIAUX & TECHNIQUES, 2009, 97 (01): : 35 - 42