Dissipation Layers in Rayleigh-Benard Convection: A Unifying View

被引:33
|
作者
Petschel, K. [1 ]
Stellmach, S. [1 ]
Wilczek, M. [2 ]
Luelff, J. [2 ]
Hansen, U. [1 ]
机构
[1] Univ Munster, Inst Geophys, D-48149 Munster, Germany
[2] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
关键词
THERMAL-CONVECTION; NUSSELT NUMBER; PRANDTL NUMBER; SIMULATIONS; MANTLE;
D O I
10.1103/PhysRevLett.110.114502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Boundary layers play an important role in controlling convective heat transfer. Their nature varies considerably between different application areas characterized by different boundary conditions, which hampers a uniform treatment. Here, we argue that, independent of boundary conditions, systematic dissipation measurements in Rayleigh-Benard convection capture the relevant near-wall structures. By means of direct numerical simulations with varying Prandtl numbers, we demonstrate that such dissipation layers share central characteristics with classical boundary layers, but, in contrast to the latter, can be extended naturally to arbitrary boundary conditions. We validate our approach by explaining differences in scaling behavior observed for no-slip and stress-free boundaries, thus paving the way to an extension of scaling theories developed for laboratory convection to a broad class of natural systems. DOI: 10.1103/PhysRevLett.110.114502
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Confined Rayleigh-Benard, Rotating Rayleigh-Benard, and Double Diffusive Convection: A Unifying View on Turbulent Transport Enhancement through Coherent Structure Manipulation
    Chong, Kai Leong
    Yang, Yantao
    Huang, Shi-Di
    Zhong, Jin-Qiang
    Stevens, Richard J. A. M.
    Verzicco, Roberto
    Lohse, Detlef
    Xia, Ke-Qing
    PHYSICAL REVIEW LETTERS, 2017, 119 (06)
  • [2] Modelling turbulent dissipation rate for Rayleigh-Benard convection
    Ye, QY
    Worner, M
    Grotzbach, G
    Jovanovic, J
    TURBULENCE, HEAT AND MASS TRANSFER 2, 1997, : 331 - 340
  • [3] RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    CONTEMPORARY PHYSICS, 1984, 25 (06) : 535 - 582
  • [4] Spectral analysis of boundary layers in Rayleigh-Benard convection
    Verdoold, Jos
    Van Reeuwijk, Maarten
    Tummers, Mark J.
    Jonker, Harm J. J.
    Hanjalic, Kemo
    PHYSICAL REVIEW E, 2008, 77 (01):
  • [5] Thermal boundary layers in turbulent Rayleigh-Benard convection
    du Puits, R.
    Resagk, C.
    Thess, A.
    ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 589 - 592
  • [6] Coherent structures in boundary layers of Rayleigh-Benard convection
    Haramina, T
    Tilgner, A
    PHYSICAL REVIEW E, 2004, 69 (05): : 4 - 1
  • [7] Viscous boundary layers in turbulent Rayleigh-Benard convection
    Li, L.
    Resagk, C.
    du Puits, R.
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): CONVECTION, ROTATION, STRATIFICATION AND BUOYANCY EFFECTS, 2011, 318
  • [8] Sheared boundary layers in turbulent Rayleigh-Benard convection
    Solomon, T.H.
    Gollub, J.P.
    Physical Review Letters, 1990, 64 (20): : 2382 - 2385
  • [9] Analysis of thermal dissipation rates in turbulent Rayleigh-Benard convection
    Shishkina, O
    Wagner, C
    JOURNAL OF FLUID MECHANICS, 2006, 546 : 51 - 60
  • [10] Measurements of the thermal dissipation field in turbulent Rayleigh-Benard convection
    He, Xiaozhou
    Tong, Penger
    PHYSICAL REVIEW E, 2009, 79 (02):