A symbolic computation procedure for the generation of Gauss quadrature rules with a user-defined weight function

被引:0
|
作者
Maucher, R
机构
[1] Univ. Gesamthochschule Kassel, Fachgebiet Baustatik
来源
关键词
numerical integration; Gauss quadrature rules;
D O I
10.1002/(SICI)1099-0887(199602)12:2<141::AID-CNM964>3.0.CO;2-B
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The advance of powerful software for symbolic and numerical computations such as Mathematica sheds a new light on a paper by Golub and Welsch from 1969. Based on this paper the author describes a Mathematica procedure for determining the weights and abscissae of a Gauss quadrature rule with a user-defined weight function. After a brief description of the algorithm and its implementation examples demonstrate the usefulness of the procedure. The procedure is extremely useful if one has to compute many integrals with the same, possibly weakly singular, weight function. This might happen, for example, in the boundary element method.
引用
收藏
页码:141 / 145
页数:5
相关论文
共 50 条
  • [1] A Directive Generation Approach Using User-defined Rules
    Komatsu, Kazuhiko
    Egawa, Ryusuke
    Takizawa, Hiroyuki
    Kobayashi, Hiroaki
    [J]. 2016 FOURTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2016, : 515 - 521
  • [2] Gauss quadrature rules for a generalized hermite weight function
    Hascelik, A. Ihsan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (01) : 86 - 96
  • [3] Symbolic representation of user-defined time granularities
    Claudio Bettini
    Roberto De Sibi
    [J]. Annals of Mathematics and Artificial Intelligence, 2000, 30 : 53 - 92
  • [4] A lattice of classes of user-defined symbolic periodicities
    Egidi, L
    Terenziani, P
    [J]. 11TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS, 2004, : 13 - 20
  • [5] Symbolic representation of user-defined time granularities
    Bettini, C
    De Sibi, R
    [J]. TIME-99: SIXTH INTERNATIONAL WORKSHOP ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS, 1999, : 17 - 28
  • [6] Symbolic representation of user-defined time granularities
    Bettini, C
    De Sibi, R
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2000, 30 (1-4) : 53 - 92
  • [7] Computation of Gauss-Kronrod quadrature rules
    Calvetti, D
    Golub, GH
    Gragg, WB
    Reichel, L
    [J]. MATHEMATICS OF COMPUTATION, 2000, 69 (231) : 1035 - 1052
  • [8] A modular approach to user-defined symbolic periodicities
    Egidi, Lavinia
    Terenziani, Paolo
    [J]. DATA & KNOWLEDGE ENGINEERING, 2008, 66 (01) : 163 - 198
  • [9] Orthogonal operators for user-defined symbolic periodicities
    Egidi, L
    Terenziani, P
    [J]. ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, PROCEEDINGS, 2004, 3192 : 137 - 147
  • [10] Parallelizing User-Defined Aggregations using Symbolic Execution
    Raychev, Veselin
    Musuvathi, Madanlal
    Mytkowicz, Todd
    [J]. SOSP'15: PROCEEDINGS OF THE TWENTY-FIFTH ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES, 2015, : 153 - 167