On the Selection of the Regularization Parameter in Stacking

被引:0
|
作者
Fushiki, Tadayoshi [1 ]
机构
[1] Niigata Univ, Niigata, Japan
关键词
Cross-validation; Model combination; Ridge regression; Stacking; REGRESSION;
D O I
10.1007/s11063-020-10378-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stacking is a model combination technique to improve prediction accuracy. Regularization is usually necessary in stacking because some predictions used in the model combination provide similar predictions. Cross-validation is generally used to select the regularization parameter, but it incurs a high computational cost. This paper proposes two simple low computational cost methods for selecting the regularization parameter. The effectiveness of the methods is examined in numerical experiments. Asymptotic results in a particular setting are also shown.
引用
收藏
页码:37 / 48
页数:12
相关论文
共 50 条
  • [1] On the Selection of the Regularization Parameter in Stacking
    Tadayoshi Fushiki
    [J]. Neural Processing Letters, 2021, 53 : 37 - 48
  • [2] Parameter selection for HOTV regularization
    Sanders, Toby
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 125 : 1 - 9
  • [3] Selection of regularization parameter for optical topography
    Correia, Teresa
    Gibson, Adam
    Schweiger, Martin
    Hebden, Jeremy
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (03)
  • [4] Constrained Regularization by Denoising With Automatic Parameter Selection
    Cascarano, Pasquale
    Benfenati, Alessandro
    Kamilov, Ulugbek S.
    Xu, Xiaojian
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 556 - 560
  • [5] MAXIMUM A POSTERIORI BASED REGULARIZATION PARAMETER SELECTION
    Panahi, Ashkan
    Viberg, Mats
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2452 - 2455
  • [6] REGULARIZATION PARAMETER SELECTION SCHEME FOR MOVING FORCE IDENTIFICATION
    Liu, Huanlin
    Yu, Ling
    [J]. FUNDAMENTAL RESEARCH IN STRUCTURAL ENGINEERING: RETROSPECTIVE AND PROSPECTIVE, VOLS 1 AND 2, 2016, : 947 - 952
  • [7] Optimal selection of regularization parameter in magnetotelluric data inversion
    Aref Zainalpour
    Gholamreza Kamali
    Ali Moradzadeh
    [J]. Acta Geodaetica et Geophysica, 2022, 57 : 245 - 263
  • [8] Selection of regularization parameter in total variation image restoration
    Liao, Haiyong
    Li, Fang
    Ng, Michael K.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (11) : 2311 - 2320
  • [9] χ2 TEST FOR TOTAL VARIATION REGULARIZATION PARAMETER SELECTION
    Mead, J.
    [J]. INVERSE PROBLEMS AND IMAGING, 2020, 14 (03) : 401 - 421
  • [10] Efficient Regularization Parameter Selection Via Information Criteria
    Araki, Yuko
    Hattori, Satoshi
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (02) : 280 - 293