Tsunami Early Warning From Global Navigation Satellite System Data Using Convolutional Neural Networks

被引:4
|
作者
Rim, Donsub [1 ]
Baraldi, Robert [2 ]
Liu, Christopher M. [3 ]
LeVeque, Randall J. [3 ,4 ]
Terada, Kenjiro [4 ]
机构
[1] Washington Univ, Dept Math & Stat, St Louis, MO 63110 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[3] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[4] Tohoku Univ, Int Res Inst Disaster Sci, Sendai, Miyagi, Japan
关键词
tsunami forecasting; machine learning; neural network; GNSS; synthetic ruptures; GeoClaw software; REAL-TIME GNSS; PERSPECTIVES;
D O I
10.1029/2022GL099511
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We investigate the potential of using Global Navigation Satellite System (GNSS) observations to directly forecast full tsunami waveforms in real time. We train convolutional neural networks to use less than 9 min of GNSS data to forecast the full tsunami waveforms over 6 hr at select locations, and obtain accurate forecasts on a test data set. Our training and test data consists of synthetic earthquakes and associated GNSS data generated for the Cascadia Subduction Zone using the MudPy software, and corresponding tsunami waveforms in Puget Sound computed using GeoClaw. We use the same suite of synthetic earthquakes and waveforms as in earlier work where tsunami waveforms were used for forecasting, and provide a comparison. We also explore varying the number of GNSS stations, their locations, and their observation durations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks
    Makinoshima, Fumiyasu
    Oishi, Yusuke
    Yamazaki, Takashi
    Furumura, Takashi
    Imamura, Fumihiko
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks
    Fumiyasu Makinoshima
    Yusuke Oishi
    Takashi Yamazaki
    Takashi Furumura
    Fumihiko Imamura
    [J]. Nature Communications, 12
  • [3] Streaming of Global Navigation Satellite System Data from the Global System of Navigation
    Ibeth Barbosa-Santillan, Liliana
    Jaime Sanchez-Escobar, Juan
    Francisco Barbosa-Santillan, Luis
    Meneses-Viveros, Amilcar
    Gao, Zhan
    Cesar Roa-Gil, Julio
    Leon-Paredes, Gabriel A.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (02) : 773 - 783
  • [4] Discriminating the occurrence of inundation in tsunami early warning with one-dimensional convolutional neural networks
    Jorge Núñez
    Patricio A. Catalán
    Carlos Valle
    Natalia Zamora
    Alvaro Valderrama
    [J]. Scientific Reports, 12
  • [5] Discriminating the occurrence of inundation in tsunami early warning with one-dimensional convolutional neural networks
    Nunez, Jorge
    Catalan, Patricio A.
    Valle, Carlos
    Zamora, Natalia
    Valderrama, Alvaro
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [6] Tsunami tide prediction in shallow water using recurrent neural networks: model implementation in the Indonesia Tsunami Early Warning System
    Dharmawan, Willy
    Diana, Mery
    Tuntari, Beti
    Astawa, I. Made
    Rahardjo, Sasono
    Nambo, Hidetaka
    [J]. Journal of Reliable Intelligent Environments, 2024, 10 (02) : 177 - 195
  • [7] TSUNAMI-GENERATION WARNING SYSTEM USING EARTHQUAKE EARLY WARNING
    Kurahashi, Susumu
    Koike, Norimitsu
    [J]. INTERNATIONAL JOURNAL OF GEOMATE, 2015, 9 (18): : 1472 - 1476
  • [8] NAVIGATION SATELLITE SELECTION USING NEURAL NETWORKS
    SIMON, D
    ELSHERIEF, H
    [J]. NEUROCOMPUTING, 1995, 7 (03) : 247 - 258
  • [9] Using Global Navigation Systems for Early Tsunami Warning about Tsunamis Excited by Magnitude 7–8 Earthquakes
    V. V. Pupatenko
    N. V. Shestakov
    [J]. Journal of Volcanology and Seismology, 2021, 15 : 26 - 34
  • [10] Motion Analysis Using Global Navigation Satellite System and Physiological Data
    Prochazka, Ales
    Molcanova, Alexandra
    Charvatova, Hana
    Geman, Oana
    Vysata, Oldrich
    [J]. IEEE ACCESS, 2023, 11 : 42096 - 42103