Phase Diagram of Water Confined by Graphene

被引:61
|
作者
Gao, Zhenghan [1 ]
Giovambattista, Nicolas [3 ,4 ,5 ]
Sahin, Ozgur [1 ,2 ]
机构
[1] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[2] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
[3] CUNY Brooklyn Coll, Dept Phys, Brooklyn, NY 11210 USA
[4] CUNY, Grad Ctr, PhD Program Phys, New York, NY 10021 USA
[5] CUNY, Grad Ctr, PhD Program Chem, New York, NY 10021 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家科学基金会;
关键词
SURFACE FREE-ENERGY; CONTACT-ANGLE; BILAYER ICE; SQUARE ICE; NANOTUBES; DYNAMICS; BEHAVIOR; CHANNEL; LIQUID; TRANSPARENCY;
D O I
10.1038/s41598-018-24358-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The behavior of water confined at the nanoscale plays a fundamental role in biological processes and technological applications, including protein folding, translocation of water across membranes, and filtration and desalination. Remarkably, nanoscale confinement drastically alters the properties of water. Using molecular dynamics simulations, we determine the phase diagram of water confined by graphene sheets in slab geometry, at T = 300 K and for a wide range of pressures. We find that, depending on the confining dimension D and density sigma, water can exist in liquid and vapor phases, or crystallize into monolayer and bilayer square ices, as observed in experiments. Interestingly, depending on D and sigma, the crystal-liquid transformation can be a first-order phase transition, or smooth, reminiscent of a supercritical liquid-gas transformation. We also focus on the limit of stability of the liquid relative to the vapor and obtain the cavitation pressure perpendicular to the graphene sheets. Perpendicular cavitation pressure varies non-monotonically with increasing D and exhibits a maximum at D approximate to 0.90 nm (equivalent to three water layers). The effect of nanoconfinement on the cavitation pressure can have an impact on water transport in technological and biological systems. Our study emphasizes the rich and apparently unpredictable behavior of nanoconfined water, which is complex even for graphene.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Phase Diagram of Water Confined by Graphene
    Zhenghan Gao
    Nicolas Giovambattista
    Ozgur Sahin
    [J]. Scientific Reports, 8
  • [2] Phase diagram of supercooled water confined to hydrophilic nanopores
    Limmer, David T.
    Chandler, David
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (04): : 1841 - 1844
  • [3] Global Phase Diagram of Water Confined on the Nanometer Scale
    Kyakuno, Haruka
    Matsuda, Kazuyuki
    Yahiro, Hitomi
    Fukuoka, Tomoko
    Miyata, Yasumitsu
    Yanagi, Kazuhiro
    Maniwa, Yutaka
    Kataura, Hiromichi
    Saito, Takeshi
    Yumura, Motoo
    Iijima, Sumio
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (08)
  • [4] The phase diagram of confined fluids
    De Grandis, V.
    Gallo, P.
    Rovere, M.
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2007, 134 (1-3) : 90 - 93
  • [5] Phase diagram of water confined in MCM-41 up to 700 MPa
    Pajzderska, A.
    Bilski, P.
    Wasicki, J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (08):
  • [6] Phase diagram of polymer blends in confined geometry
    Müller, M
    Binder, K
    Albano, EV
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2001, 92 (1-2) : 41 - 52
  • [7] Phase diagram and glass transition of confined benzene
    Xia, Yongde
    Dosseh, Gilberte
    Morineau, Denis
    Alba-Simionesco, Christiane
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (39): : 19735 - 19744
  • [8] Phase Diagram of Diblock Copolymers Confined in Thin Films
    Li, Weihua
    Liu, Meijiao
    Qiu, Feng
    Shi, An-Chang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (17): : 5280 - 5288
  • [9] GLOBAL PHASE-DIAGRAM OF A CONFINED UNIAXIAL NEMATIC
    FERREIRA, PG
    DAGAMA, MMT
    [J]. PHYSICA A, 1991, 179 (02): : 179 - 198
  • [10] Ionized water confined in graphene nanochannels
    de Aquino, Belisa R. H.
    Ghorbanfekr-Kalashami, H.
    Neek-Amal, M.
    Peeters, F. M.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (18) : 9285 - 9295